

Levels of analysis [3]	
Semantics	
 Only a small part reasonably solved: the most sophisticated textbooks on Semantics treat 	
 either very simple sentences (a cat eats a mouse) or complex useless ones (every man whose father is a doctor loves woman) 	а
 but fail to give a useful analysis of normal sentences taken e.g. in the newspaper 	he
- All the unsolved problems are said to resort to "pragmatics"	
Pragmatics: Juxtaposition of partial issues, e.g. • Speech acts • Conversational conventions • Contextual disambiguation, anaphoras • Non-literal meaning, metaphors • Argumentation, text analysis	
With, most of the time, informal "solutions" (e.g. relevance theory) very difficult to give a computational account of. Bucharest 2003)

Collective [1]	
 Three men (∃ x,y) (=(card(x),3) ∧ (∀z)(member-of(z,x)) man(z) ∧	→
 carry a piano piano(y) ^ carry(z,y))) The Paris métro carries 3.6 billion passengers per year 	
$(\exists x) (=(card(x), 3.6 \text{ billion}) \land (\forall z) (member-of(z,x) \Rightarrow passenger(z))) \text{ is dead wrong!} $	

Approach based on models vs. Approach based on proofs In a formal system that is *correct*, Every provable fact holds true in all models In a formal system that is *complete*, Whatever is true in all models is provable First-order logic is both correct and complete ... But correction and completeness make sense only if interpretation takes place in a fixed universe!

- color has no interpretation
- There exists an operator PREDICATE such that when it takes *color* as argument, yields a unary predicate
 - Red is a color $\rightarrow \mathsf{PREDICATE}(color)$ (red)
- There exists an operator FUNCTION such that when it takes *color* as argument, yields a unary function

- This flower is red \rightarrow =(red, FUNCTION(*color*) (fl#1))
- The other examples are solved in a similar way

Price of a substance

- The price of gasoline does exist; now, it is not a price!
- For PREDICATE(*price*) to become applicable, a volumetric unit must be specified.
- This is a special case of a general phenomenon: the operator **add-parameters**
- $(\forall x, y)$ (substance(x) $\Rightarrow \neg PREDICATE(price)(FUNCTION(price)(x)) \land volumetric-unit(y) <math>\Rightarrow$
 - PREDICATE(price) [ADD-PARAM(unit) ((FUNCTION(price)(x)),y)])

- Words act as « inference triggers » for that process
- It is better to consider words as **factoring out**

- similar inferences, rather than
- similar objects.