Agent-oriented Software Engineering and Methodologies

Adina Magda Florea

Department of Computer Science and Engineering

“Politehnica” University of Bucharest

Email: adina@cs.pub.ro

1 Introduction

The invention of autonomous agent and multi-agent technology is one of the landmark events in the computer science community of the ‘90s. Agents are being espoused as a new theoretical model of computation for engineering complex, distributed systems. An increasing number of software systems are being viewed in terms of autonomous agents. Despite this currently growing interest in the agent paradigm, a number of fundamental questions about the nature and the use of the agent-oriented approach remain to be answered. In particular:

· What are the principles of agent-based computing?

· What makes the agent-based approach an appealing and powerful computation model?

· What are the drawbacks of adopting an agent-oriented approach?

· What are the methodologies to be used when developing agent-based systems and applications?

Building high quality software for real-world applications is a difficult task both in terms of the number and flexibility of the constituent components and in terms of their interconnections. Moreover, this statement is true no matter what models and techniques are applied. The role of software engineering is to provide models and techniques that make it easier to handle this complexity. To this end, a wide range of software engineering paradigms have recently been devised, e.g. object-orientation, component-ware, design patterns, and software architectures. Each successive development either tried to make the engineering process easier or to extend the complexity of applications that can feasibly be built.

It is argued that although contemporary methods are a step in the right direction, when it comes to developing complex, distributed systems they fall short in two main ways: interactions between the various computational entities are too rigidly defined and there is insufficient mechanisms available for representing the system’s inherent organisational structure [Jen00].

The agent paradigm is a good response to these problems because agent-oriented approaches can significantly enhance our ability to model, design and build complex, distributed systems [WJ95]. Besides, agent-based approaches are a both natural and a logical evolution of a range of contemporary approaches to software engineering. It is likely that the agent-oriented approaches will succeed as one of the mainstream software engineering paradigms.

On the other hand, in spite of the different developed agent theories, languages, architectures and the success of agent-based applications, not too much work has been dedicated to specifying and applying techniques to develop agent-based applications. The role of agent methodology is to assist in all phases of the life cycle of an agent-based application, including its management.

In this paper, we will try to summarise some of the agent computing community arguments that support the statement that agent approaches will succeed as the mainstream of software engineering and briefly review some of the current approaches of the agent-oriented methodologies.

2 Agent-based Approaches to Software Engineering

There is an increasing consensus that agent-based approaches are well suited to engineer complex, distributed systems, to develop software for solving complex real-world problems. To bring arguments towards this idea, ideally one would have a set of quantitative data that showed, on a standard set of software metrics, the superiority of the agent-based approach in terms of productivity, software reliability, system maintainability, etc., over a range of other techniques. However such data does not exist, as it does not for other contemporary methods in software engineering.

Some other arguments may be brought toward the idea, based on the suitability of agent-based techniques for tackling complex, real-world problems, as identified by Booch [Boo94]. Booch specifies the following mandatory characteristics of a software engineering paradigm for engineering complex systems:

· decomposition – the capacity to divide a large problem into smaller, more manageable chunks each of which can be dealt with in relative isolation

· abstraction – the capacity to define a simplified model of the system that emphasises some of the details and properties, while suppressing others; therefore the attention can be focussed on salient aspects of the problem, at the expense of the less relevant details

· organisation – the process of identifying and managing the interrelationships between various problem solving components. The ability to specify and enact organisational relationships helps designers tackle complexity in two ways: firstly, by enabling a number of basic components to be grouped together and treated as a high-level unit of analysis, secondly, by providing a means of describing the high-level relationships between various units (e.g. a number of components may work together, cooperate, to provide a particular functionality).

2.1 Agent-oriented Decomposition

The agent-oriented approach decomposes the problem in terms of autonomous agents that can engage in flexible, high-level interactions. The autonomy property of the agents means that the system may be engineered as a collection of (interacting) problem solvers and that the problem solvers have their own persistent thread of control, i.e. they are active, and that they decide for themselves which actions they should perform at what time. This is a natural representation for complex systems that are inherently distributed. This decentralisation reduces the system’s control complexity and results in a lower degree of coupling between components. Agents self-awareness reduces control complexity since the system’s control is localised inside each individual problem solving component and decisions about what actions should be performed are can be based on the local situation of the problem solver.

The social dimension of agents means that they can be engaged in complex, high-level flexible interactions. The agents are able to make decisions about the nature and scope of the interactions at run-time and this makes the engineering of complex systems easier for two reasons. In a distributed and complex system, it is impossible to know a priori all potential interactions, at what time, for what reason, etc., therefore the components need the ability to initiate and respond to interactions in a flexible manner. Agents are specifically designed to be able to interact, communicate and coordinate with each other, deal with unanticipated situations and take timely decisions as regarding what actions to perform, what reactions to have or what requests to generate for assistance when appropriate. The second reason is that, because all agents are continuos active and any coordination that is required is handled bottom-up through inter-agent interaction, the management of control relationships between the software components is significantly reduced.

2.2 Agent-oriented Abstraction

When it comes to designing software, the most powerful abstractions are those that minimise the semantic distance between the units of analysis that are intuitively used to conceptualise the problem and the constructs present in the solution paradigm. There is a clear and strong degree of correspondence between the notions of subsystems and agent organisations. The interplay between the subsystems and between their constituent components is most naturally viewed in terms of high-level social interactions. For instance, Booch [Boo94] begins his analysis of complex systems from the following standpoint: “at any given level of abstraction, we find meaningful collection of entities that collaborate to achieve some higher level view”. Agents systems are cooperating to achieve common objectives, coordinating their actions or negotiating to resolve conflicts.

Complex systems involve changing webs of relationships between their various components. The agent-based approach provide a rich set of structures for explicitly representing and managing organisational relationships, for example roles, norms, social laws. Interaction protocols exist for forming new groups, structures are available for modelling collectives action [Jen95, ST97], or for achieving coalitions [SL97, SK98]

2.3 Organisation

The agent-oriented approach provides an explicit representation of organisational relationships and structures. The notion of primitive component can be varied according to the need of the observer. Thus at one level, the entire subsystem can be viewed as a primitive component or as a team or collection of agents. Recursive agent structures can be defined to lower the complexity of the organisational construction and relationships. Such structures provide a variety of stable intermediate forms which implies that individual or organisational groupings can be developed in relative isolation and then added into the system in an incremental manner.

Different types of organisations, interactions and relationships among member (agents) of the organisation may be defined, from totally cooperative to competitive or self-interested, and the relationships may be dynamically changed or elicited. Therefore, agent-oriented approaches provides explicit models to represent organisational relationships in a complex and dynamic environment.

3 A New Mainstream of Software Engineering?

Why agent-based techniques are likely to succeed and make it into the mainstream of software engineering? There are two important reasons for believing that agent-based techniques will become widely adopted.

The first one is that agent-based approach can be viewed as a natural next in the evolution of a whole range of approaches to software engineering. The last twenty years developments in software engineering showed a move towards paradigms and languages that have their key abstractions rooted in the problem domain, for example the object-oriented approach. Although there are certain similarities between object and agent-oriented approaches (information hiding, interactions), there are also a number of important differences First, objects are generally passive in nature: they need to be sent a message before they become active. Second, although objects encapsulate state and behaviour they do not encapsulate action choice. Third, object-orientation fails to provide an adequate set of concepts and mechanisms for modelling complex systems at an adequate level of abstraction. Finally, object-oriented approaches provide only minimal support for specifying and managing organisational relationships.

Agents represent a next step in the evolution of object-oriented approaches. Just as the real world is populated with (passive) objects that have operations performed on them, so it is equally (if not more) full of active, purposeful agents that interact to achieve their objectives. So the agent-oriented view of the world is perhaps the most natural way of characterising many types of problems. The basic building blocks of the programming models exhibit increasing degrees of localisation and encapsulation. Agents follow this trend by localising purpose inside each agents, by giving each agent its own thread of control, and by encapsulating action selection. Ever richer mechanisms for providing reuse are being provided. Agents offers not only reuse of subsystem components and preordered interactions but also whole subsystems and flexible patterns interactions (e.g. models of negotiation and reaching agreement). They also enable legacy (non-agent) software to be incorporated in a relatively straightforward manner. The techniques wraps software around the legacy code and presents an agent interface to the other software components and thus looks like an agent.

The second reason is that agent-based techniques are the ideal computational model for developing software for open, networked systems (such as Internet). In such environments, the dominant software model needs to be based on synthesis or construction, rather than decomposition or reduction. Agents are active and autonomous, so they are problem solving entities that act to achieve specified objectives. They are reactive and proactive, so the computational entities may act while coping with the inherent uncertainty they face in an open environment, and are endowed with flexible interactions so they are able to interact with entities that were not foreseen at design time. Last but not least, agents have explicitly represented organisational relationships; the organisational relationships that exist between the stakeholders can be reflected in the behaviour and actions of the problem solvers.

It is also necessary to consider the potential disadvantages of agent-based approaches. Some agent characteristics that give the power of the paradigm may lead to traps or difficulties. For example, the patterns of outcomes of the interactions are inherently unpredictable. Predicting the behaviour of the overall system based on its constituent components is extremely difficult because of the strong possibility of emergent behaviour. There are several possibilities to circumvent these difficulties. One may use interactions protocols whose properties can be formally analysed or can adopt rigid or present organisational structures. But this may lead to the limitation of the nature and scope of agent interplay. Such solutions reduce the system unpredictability but also limits the power of agent-based approach. Agent computing community is actively looking for solutions to overcome these difficulties. One possible solution is proposed by N.R. Jennings in [Jen00]. Jennings defines a level above the knowledge level of Newell, namely the social level that should provide the social principles and foundations of agent-based systems.

Despite these difficulties and considering the advantages and power of the agent paradigm aforementioned, it is likely to think that agent-based approaches will become one of the most influential paradigms, if not the mainstream of software engineering.

4 Agent-oriented Methodologies

To avoid building a methodology from scratch, the researchers on agent-oriented methodologies have followed the approach of extending methodologies to include the relevant aspects of the agent paradigm. These extensions have been carried out mainly in two areas: object-oriented methodologies and knowledge engineering methodologies [IGG98].

4.1 Extensions of Object-oriented Methodologies

Some similarities between the object-oriented paradigm and the agent-oriented paradigm justify the approach of extending object-oriented methodologies. The popularity of object-oriented methodologies is another potential advantage of extending object-oriented methodologies for agent-based systems. Many object-oriented methodologies are being used in the industry with success such as Object Modelling Technique (OMT) [Rum91], Object Oriented Software Engineering (OOSE) [Jac92], Object-Oriented Design [Boo94], Responsibility Driving Design (RDD) [WWW90] and Unified Modelling Language (UML) [UML97]. This experience can be a key to facilitate the integration of agent technology because on the one hand , the software engineers can be reluctant to use and learn a complete new methodology, and on the other hand, the managers would prefer to follow methodologies which has been successfully tested.

But the extensions and modifications to existing object-oriented methodologies should support the important differences between objects and agents mentioned in Section 3. Some of the existent approaches of extending OO methodologies to multi-agents systems are presented bellow.

Agent Modelling Technique for Systems of BDI agents. This method [KGR96] defines two main levels (external and internal) for modelling BDI (Belief, Desire, Intention) agents [RG91]. The external viewpoint consist of the decomposition of the system in agents and the definition of their interactions. This is carried out through two models: the agent model, for describing the hierarchical relationship between agents and relationship between concrete agents; and the interaction model, for describing the responsibilities, services and interactions between agents and external systems. The internal viewpoint carries out the modelling of each BDI agent class through three models: the belief model, which describes the beliefs about the environment; the goal model, which describes the goals and events an agent can adopt or respond to; and the plan model, which describes the plans an agent can use to achieve its goals.

The development process of the external viewpoint starts with the identification of the roles (functional, organisational, etc.) of the application domain in order to identify the agents and arrange them in an agent class hierarchy described using OMT like notation. Then the responsibilities associated to each role are identified, together with the services provided and used to fulfil the responsibilities. The next step is the identification of the necessary interactions for each service and both the speech-act and information content of every interaction. Finally, the information is collected in an agent instance model. The development of the internal viewpoint starts with the analysis of the different means (plans) of achieving a goal. The plans for responding to an event or achieving a goal are represented using a graphical notation similar stratecharts, but adding the notion of failure of the plan. Finally, the beliefs of the agent about the objects of the environment are modelled and represented using OMT notation.

Multi-Agent Scenario-Based Method. This method [MC94] is intended to applied for MAS in the field of cooperative work (CSCW). The analysis phase consist of the following activities:

· Scenario description: identification using natural language of the main roles played by both the human and the software agents, objects of the environment and the typical scenarios.

· Role functional description: description of the agent roles using behaviour diagrams, which describe the processes, the relevant information and the interactions between the agents.

· Data and world conceptual modelling: modelling of the data and knowledge used by the agent using entity-relationship diagrams (or object-oriented diagrams) and entity life-cycle diagrams.

· System-user interaction modelling: simulation and definition of different suitable interfaces for human-machine interaction in every scenario.

The design phase consists of the following activities:

· MAS architecture and scenario description: selection of the scenarios to be implemented and the roles played by the agents in these scenarios.

· Object modelling: refines the world modelling of the analysis, defining hierarchies, attributes and procedures.

· Agent modelling: specification of the elements defined in the data conceptual modelling step of the analysis as belief structures. A graphical notation is proposed for describing the decision process of a agent, taking into account beliefs, plans, goals and interactions.

· Finally, two steps are stated but not developed: conversation modelling and system design overall validation.

Agent oriented methodology for Enterprise modelling. This methodology [Eli96] proposes the combination of object-oriented methodologies (OOSE) and enterprise modelling methodologies IDEF (Integration Definition for Function modelling) [FIPS93] and CIMOSA (Computer Integrated Manufacturing Open System Architectures) [Kos93]). The identified models are:

· Function Model: describes the functions (inputs, outputs, mechanisms and control) using IDEF diagrams that include the selection of the possible methods depending on the input and the control.

· Use Case Model: describes the actors involved in each function, using OOSE use case notation.

· Dynamic Model: this model is intended for analysing object interactions. The use cases are represented in event trace diagrams.

The Agent Oriented System comprises:

· Agent Identification: the actors of the use cases are identified as agents. The main functions of an agent are its goals and the possibilities described in the IDEF diagrams.

· Coordination protocols or scripts: they are described in state diagrams.

· Plan invocation: sequence diagrams extend event trace diagrams to include conditions for indicating when a plan is invoked.

· Beliefs, Sensors and Effectors: inputs of the functions should be modelled as beliefs or obtained from objects via sensors, and achieved goals should be modelled as changes to beliefs or modifications via effectors.

4.2 Extensions of Knowledge Engineering Methodologies

Knowledge engineering methodologies can provide a good basic for MAS modelling since they deal with the development of knowledge based systems. Since the agents have cognitive characteristics, these methodologies can provide the techniques for modelling the agent knowledge. The definition for the knowledge of an agent can be considered as a knowledge acquisition process, and this process is only addressed in these methodologies. The extension of current knowledge engineering methodologies can take advantage of the acquired experience in these methodologies. In addition, both the existing tools and the developed ontology libraries and problem solving method libraries can be reused. Although these methodologies are not as extended as the object-oriented ones, they have been successfully applied to several projects.

Several solutions have been proposed for MAS modelling extending CommonKADS [36]. The main reason of the selection of this methodology among the knowledge engineering methodologies is that it can be seen as an European standard for knowledge modelling. CommonKADS defines the modelling activity as the building of a number of separate models that captures salient features of the system and its environment. Some of the existent approaches are presented bellow.

The CoMoMAS methodology. Glaser [Gla96] proposes an extension to the methodology CommonKADS [Sch94] for MAS modelling. The following models are defined:

· Agent Model: this is the main model of the methodology and define the agent architecture and the agent knowledge, that is classified as social, cooperative, control, cognitive and reactive knowledge.

· Expertise Model: described the cognitive and reactive competencies of the agent. It distinguished between task, problem solving (PSM) and reactive knowledge. The task knowledge contains the task decomposition knowledge described in the task model. The problem-solving knowledge describes the problem solving methods and the strategies to select them. The reactive knowledge describes the procedures for responding to stimuli.

· Task model: describes the task decomposition, and details if the task are solved by a user or an agent.

· Cooperation Model: describes the cooperation between the agents using conflict resolution methods and cooperation knowledge (communication primitives, protocols and interaction terminology).

· System Model: defines the organisational aspects of the agent society together with the architectural aspects of the agents.

· Design Model: collects the previous models in order to operationalise them, together with the non-functional requirements.

The MAS-CommonKADS methodology. This methodology [Igl97] extends the models defined in CommonKADS, adding techniques from object-oriented methodologies (OOSE, OMT) and from protocol engineering for describing the agent protocols. The methodology starts with a conceptualisation phase that is an informal phase for collecting the user requirements and obtaining a first description of the system from the user point of view. The methodology defines the models described below for the analysis and the design of the system, that are developed following a risk-driven life cycle. For each model, the methodology defines the its constituents (entities to be modelled) and the relationships between the constituents. The methodology defines a textual template for describing every constituent and a set of activities for building every model, based on the development state of every constituent (empty, identified, described or validated). These activities facilitates the management of the project. The extension defines the following models:

· Agent Model: describes the main characteristics of the agents, including reasoning capabilities, skills (sensors/effectors), services, goals, etc. Several techniques are proposed for agent identification, such as analysis of the actors of the conceptualisation phase, syntactic analysis of the problem statement, application of heuristics for agent identification, reuse of components (agents) developed previously or usage of CRC cards, which have been adapted for agent oriented development.

· Task Model: describes the tasks (goals) carried out by agents, and task decomposition, using textual templates and diagrams.

· Expertise Model: describes the knowledge needed by the agents to carry out the tasks. The knowledge structure follows the KADS approach, and distinguishes domain, task, inference and problem solving knowledge. Several instances of this model are developed for modelling the inferences on the domain, on the agent itself and on the rest of agents. The authors propose the distinction between autonomous problem solving methods, that decompose a goal into subgoals that can be directly carried out by the agent itself and cooperative problem solving methods, that decompose a goal into subgoals that are carried out by the agent in cooperation with other agents.

· Coordination Model: describes the conversations between agents, that is, their interactions, protocols and required capabilities. The development of the model defines two milestones. The first milestone is intended to identify the conversations and the interactions. The second milestone is intended to improve these conversation with more flexible protocols such as negotiation and identification of groups and coalitions. The interactions are modelled using the formal description techniques MSC (Message Sequence Carts) and SDL (Specifications and Description Language).

· Organisation Model: describes the organisation in which the MAS is going to be introduced and the organisation of the agent society. The description the multiagent society uses an extension of the object model of OMT, and describes the agent hierarchy, the relationship between the agents and their environment, and the agent society structure.

· Communication Model: details the human-software agent interactions, and the human factors for developing these user interfaces.

· Design model: collects the previous models and is subdivided into three submodels: application design: composition or decomposition of the agents of the analysis, according to pragmatic criteria and selection of the most suitable agent architecture for each agent; architecture design: designing of the relevant aspects of the agent network: required network, knowledge and telematic facilities and platform design: selection of the agent development platform for each agent architecture.

This methodology has been successfully applied in developing projects such as intelligent network management and modular integration of symbolic and connectionist knowledge-based systems.

5 Conclusions

In this paper we have tried to review some of the current directions and research in software engineering and methodologies for building agent-based systems and applications. The paper analysed the capacities of the agent paradigm to model important properties of complex systems such as decomposition, abstraction and organisation and questioned the potential future of the approach. The paper showed that the agent paradigm may bring interactions between the various computational entities that are involved in complex, real-world systems, and provide mechanisms for representing the system’s inherent organisational structure. The agent paradigm to engineer software systems may be seen as a natural evolution of a range of contemporary approaches, such as object-oriented software engineering. The paper also presented a range of agent-oriented methodologies, with a primary focus on those derived from object-oriented methodologies and from knowledge engineering methodologies.

The basic claim is that the agent-based model and computing has the potential to significantly improve the ability to model, design and build complex distributed software systems. It is likely that the agent-oriented approaches will succeed as one of the mainstream software engineering paradigms. Against this claim, the impredictability of agent interactions and the strong possibility of emergent behaviour are limitations of the approach that are currently under study. As there is a rather general consensus in regarding distributed and concurrent systems as main trend of computer science and engineering, with a great emphasis on flexibility of interactions and open character, agent-based models are expected to play an important role in the future.

References

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications, Addison-Wesley, Reading, MA, 1994.

[Eli96]
A. Elisabeth e.a. A methodolgy for developing agent-based systems for enterprise integration. In D. Lukose and C. Zhang (eds.), Proc. of the First Australian Workshop on DAI, LNAI, Springer-Verlag, 1996.

[FIPS93] FIPS Pub 183. Integration definition for function modeling. Software Standard. Modelling Techniques. National Institute of Standards and Technology, Md. 20899, 1993.

[Gla96]
N. Glaser. Contribution to Knowledge Modeling in a Multi-Agent framework (the CoMoMAS Approach), PhD Thesis, l’Université Pointcaré, Nancy, 1996.

[IGG98]
C. Iglesias, M. Garijo, J.C. Gonzalez. A survey of agent-oriented methodologies. In Proc. of ATAL, the 5th International Workshop on Agent theories, Architectures and languages, Paris, 4-7 July, 1998, p.185-198.

[Igl97]
C. Iglesias e.a. Analysis and design of multiagent systems using MAS-CommonKADS. In Proc. of AAAI’97, Workshop on Agent Theories, Architectures and languages, Providence, RI, 1997.

[Jac92]
I. Jacobson e.a. Object-Oriented Software Engineering. A Use case Driven Approach. ACM Press, 1992.

[Jen00]
N.R. Jennings. On agent-based software engineering. Artificial Intelligence, Vol. 117, No.2, 2000, p.277-296.

[Jen95]
N.R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems. Artificial Intelligence 75 (2), 1995, p.195-240.

[KGR96] D. Kinny, M. Georgeff, A. Rao. A methodology and modelling technique for systems of BDI agents. In W van de Velde and J. Perram (eds.), Agent Breaking Away: Proc. of the 7th European Workshop on Modeling Autonomous Agents in a Multi-Agent World, LNAI Vol. 1938, Springer-Verlag, Germany, 1996.

[Kos93]
K. Kosanke. CIMOSA – A European Development for Enterprise Integration. IOS Press, 1993.

[MC94]
B. Moulin, L. Cloutier. Collaborative work based on multiagent architectures: A methodological perspective. In F. Aminzadeh and M. jamshidi (eds.), Soft Computing, Fuzzy Logic, Neural Networks and Distributed Artificial Intelligence, Prentice-Hall, 1994, p.261-296.

[RG91]
A.S. Rao, M.P. Georgeff. Modeling Rational Agents Within a BDI-architecture. In R. Fikes and E. Sandwall, editors, In Proc. of Knowledge Representation and Reasoning (KR&R-91), Morgan Kaufman, 1991, p. 473-484.

[Rum91]
J. Rumbaugh e.a. Object Oriented Modeling and Design, Prentice-Hall, 1991.

[Sch94]
A.T. Schreiber e.a. CommonKADS: A comprehensive methodology for KBS development. Technical Report DM1.2a, Univ. of Amsterdam, Netherlands Research Foundation ECN and Free Univ. of Brussels, 1994.

[SK98]
O. Shehory, S. Kraus. Methods for task allocation via agent coalition formation. Artificial Intelligence, Vol. 101, Nr.1-2, 1998, 165-200

[SL97]
T.W. Sandholm, V.R. Lesser. Coalitions amomg computationally bounded agents. Artificial Intelligence, 94 (1-2), 1997, p. 99-137.

[ST97]
Y. Shoham, M. Tennenholtz. On the emergence of social conventions: modeling, analysis, and simulation. Artificial Intelligence, 94 (1-2), 1997, p.139-166.

[UML97] Rational Software Corporation. Unified Modelling language (UML), version 1.0, 1997.

[WJ95]
M. Wooldrige, N.R. Jennings. Intelligent agents: Theory and practice. Knowledge Engineering Review Vol. 10, No. 2, 1995, p.115-152.

[WWW90] R. Wirfs-Brock, B. Wilkerson, L. Wiener. Designing Object-Oriented Software. Prentice-Hall, 1990.

