Multi-Agent Systems
Lecture?2

University “Politehnica” of Bucarest
2003 - 2004

Adina Magda Florea
adina@cs.pub.ro

http://turing.cs.pub.ro/blia_2004

M odels of agency and

architectures
L ecture outline

= Conceptual structures of agents
= Cognitive agent architectures

= Reactive agent architectures

= Layered architectures

TIN &

ZIE T TTER T TN = TE R

1. Conceptual structures of agents

1.1 Agent rationality

= An agent is said to be rational if it acts so as
to obtain the best results when achieving the
tasks assigned to it.

= How can we measure the agent’s rationality?

= A measure of performance, an objective
measure if possible, associated to the tasks
the agent has to execute.

= An agentis situated in an environment
= An agent perceives its environment through sensors and
acts upon the environment through effectors.

= Aim: design an agent program = a function that
implements the agent mapping from percepts to actions.

We assume that this program will run on some computing
device which we will call the architecture.

= The environment
— accessible vs. inaccessible
— deterministic vs. non-deterministic
— static vs. dynamic
— discrete vs. continue

1.2 Agent modeling

E={e,..e.}
P={p,..p, .}
At A={ay .3 .}
Perception Execution
component component Reflex agent
see: E - P
L S I action: P - A
| v env: ExA - P(E)

Environment ‘

Agent modeling

Several reflex agents
see:E S P

1={iL,....i,.} env:ExA,x... A, - P(E)
inter : P |
rinter: 1 - P
action: P - A
Decision Agent (A1)
component Interaction
action component Agent (A2)

inter / rinter

-~

Perception Execution
component

Environment

Agent modeling

Cognitive agents

Agents with states S={sl,...,s,...}
= action: S - A

= next:SxP S

= inter: SxP o |

= rinter: Sx1 - P

msee:ESP

= env:ExXA x..A - P(E)

Agent modeling

Agents with states and goals
goal : E - {0, 1}

Agents with utility

utility : E = R

Environment non-deterministic
env:ExA 5 P(E)

The probability estimated by the agent that the result of an
action (2) execution in state ¢ will be the new state

z prob(e(a e) = é) =1

e Denv(e, a)

Agent modeling

Agents with utility

The of an action in a state ¢, from the
agent’s point of view

U(a,e)= D prob(ex(a,e) = ey utility (¢')

elenv(e,a)

The principle of
Maximum Expected Utility (MEU) =
a rational agent must choose the action that will bring
the maximum expected utility

How to model?

= Getting out of a maze
— Reflex agent

— Cognitive agent

— Cognitive agent with utility

3 main problems:
= what action to choose if several available
= what to do if the outcomes of an action are not known

= how to cope with changes in the environment

10

2. Cognitive agent architectures

2.1 Rational behaviour

Al = models of searching the space of possible actions to
compute some sequence of actions that will achieve a
particular goal

= Decision theory = competing alternatives are taken as
given, and the problem is to weight these alternatives and
decide on one of them (means-end analysis is implicit in
the specification of competing alternatives)

= Problem 1 = deliberation/decision vs. action/proactivity
= Problem 2 = the agents are resource bounded

T -rﬂ

11

Int i -
om eractions Information about
itself
P - what it knows
Communication e .
Other - what is ableto do
- how it isableto do
ents 1
= - what it wants
: environment and
f other agents
- knowledge
Outplt Scheduler& bliefs
Executor
Input —
General cognitive agent architecture
Environment
12

2.2 FOPL models of agency

= Symbolic representation of knowledge + use inferences in FOPL -
deduction or theorem proving to determine what actions to execute

= Declarative problem solving approach - agent behavior represented
as a theory T which can be viewed as an executable specification

At(0,0) O Free(0,1) O Exit(east) -~ Do(move_east)
Facts and rules about the environment

At(0,0)

Wall(1,1)

Ox Oy Wall(x,y) - —Free(x,y)

Automatically update current state and test for the goal
state At(0,3)

13

FOPL models of agency

= describe change in FOPL
Define a function Result(Action,State) = NewState

At((0,0), Sp) OFree(0,1) OExit(east) —
At((0,1), Result(move_east,S))

Try to prove the goal At((0,3),) and determine the
actions that lead to it

- means-end analysis

14

Advantages of FOPL
- simple, elegant
- executable specifications

Disadvantages
- difficult to represent changes over time
other logics

- decision making is deduction and
selection of a strategy

- intractable
- semi-decidable

15

2.3 BDI architectures

= High-level specifications of a practical component of an
architecture for a resource-bounded agent.

= |t performs means-end analysis, weighting of competing
alternatives and interactions between these two forms of
reasoning

= Beliefs = information the agent has about the world

= Desires = state of affairs that the agent would wish to
bring about

= [ntentions = desires (or actions) that the agent has
committed to achieve

= BDI - a theory of practical reasoning - Bratman, 1988

= intentions play a critical role in practical reasoning - limits
options, DM simpler

BDI particularly compelling because:

= philosophical component - based on a theory of
rational actions in humans

= software architecture - it has been implemented and

successfully used in a number of complex fielded

applications

— IRMA - Intelligent Resource-bounded Machine Architecture

— PRS - Procedural Reasoning System

logical component - the model has been rigorously

formalized in a family of BDI logics

— Rao & Georgeff, Wooldrige

—(Int A ¢) -~ - (Bel Ad)

16
BDI Architecture A/pe"cems
| =filter(B, D, 1)
ni=plan(B, I)
Library of plans
actions 18

Roles and properties of intentions

= Intentions drive means-end analysis

= Intentions constraint future deliberation
= Intentions persist

= Intentions influence beliefs upon which future practical
reasoning is based

Agent control loop

B =B, 1=1, D=D,

while true do
get next perceipt p
B = brf(B,p)
D = options(B, D, I)
| = filter(B, D, 1)
m=plan(B,)
execute(T)

end while

19

Commitment strategies

o If an option has successfully passed trough the filter
function and is chosen by the agent as an intention, we
say that

o Commitments implies temporal persistence of intentions;
once an intention is adopted, it should not be immediately
dropped out.

Question: How committed an agent should be to its
intentions?

o Blind commitment
o Single minded commitment
o Open minded commitment
Note that the agent is committed to both ends and means.
20

B =B,
I1=1,D=D,
while true do
get next perceipt p
B = brf(B,p)
D = options(B, D,)
| = filter(B, D, 1)
mt=plan(B,)
while not (empty(m) or succeeded (I, B) or impossible(l, B)) do
a = head(m)
execute(a)
Tt = tail(m)
get next perceipt p
B = brf(B,p)
if not sound(rt, I, B) then
m=plan(B,) «——— Reactivity, replan

Revised BDI agent control loop

Dropping intentions that areimpossible
or have succeeded

end while
end while

21

B =B
I=1, D=D, Revised BDI agent control loop
while true do
get next perceipt p
B = brf(B,p)
D = options(B, D, I)
| = filter(B, D, 1)
m=plan(B,)
while not (empty(m) or succeeded (I, B) or impossible(l, B)) do
o = head(m)
execute(a)
Tt = tail(m)
get next perceipt p
B = brf(B,p)
if reconsider(l, B) then
D = options(B, D, I)
| = filter(B, D, 1)
m=plan(B,) <4— Replan
end while
end while 22

3. Reactive agent
architectures

Subsumption architecture - Brooks,
1986

= (1) Decision making = {Task Accomplishing
Behaviours}
— Each behaviour = a function to perform an action
— Brooks defines TAB as finite state machines
— Many implementations:

B = (2) Many behaviours can fire simultaneously

N zs

Subsumption architecture

= A TAB is represented by a competence module
(c.m.)
Every c.m. is responsible for a clearly defined, but
not particular complex task - concrete behavior
The c.m. are operating in parallel
Lower layers in the hierarchy have higher priority and
are able to inhibit operations of higher layers
= c.m. at the lower end of the hierarchy - basic,
primitive tasks;
= c.m. at higher levels - more complex patterns of
behaviour and incorporate a subset of the tasks of
the subordinate modules
=> subsumtion architecture
24

T -t-ﬁ

Competence
4/ Module (2 —
Investigate env Output
Input I b
(percepts) (actions)
Competence
- Sensors Module (1) »| Effectors I:>
Move around
|
i
Competence
I Module (0) e
Avoid obstacles
Module 1 can monitor and influence the inputs and —»| Competence |
outputs of Module 2 > Module (1)
M1 = move around while avoiding obstacles 0 MO Move around

M2 = explores the environment looking for Supressor node

distant objects of interests while moving

around 0 M1 Com

= Incorporating the functionality of a subordinated M Odlﬁ%[):e
c.m. by a higher module is performed using — | L >
suppressors (modify input signals) and Avoid obstacles
inhibitors (inhibit output) 25

= More modules can be added:
+ Replenishing energy
« Optimising paths
« Making a map of territory
« Pick up and put down objects

Behavior
(c, a) — pair of condition-action describing behavior

R={(c,a)|cOP,aldA} -setof behavior rules
0 O R x R - binary inhibition relation on the set of behaviors, total ordering of R

function action(p: P)
var fired: P(R), selected: A
begin
fired={(c,a) | (c,a) ORand p Oc}
for each (c, a) O fired do
if = 0(c', a') Ufired such that (c', &) O (c, @) thenreturn a
return null

end 26

= Every c.m. is described using a subsumption language based on
AFSM - Augmented Finite State Machines

= An AFSM initiates a response as soon as its input signal
exceeds a specific threshold value.

= Every AFSM operates independently and asynchronously of
other AFSMs and is in continuos competition with the other c.m.
for the control of the agent - real distributed internal control

= 1990 - Brooks extends the architecture to cope with a large
number of c.m. - Behavior Language

Other implementations of reactive architectures

= Steels - indirect communication - takes into account the social
feature of agents

= Advantages of reactive architectures
= Disadvantages

27

4. Layered agent architectures
= Combine reactive and pro-active behavior

= At least two layers, for each type of behavior
= Horizontal layering - i/o flows horizontally
= Vertical layering - i/o flows vertically

Action Action
output output

Layern Layer n Layer n
perceptual >L‘ Action
input output
Layer2 7 Layer 2 Layer 2
Layer 1 Layer 1 Layer 1
Vertical

Horizontal perceptual perceptual
input input 28

TouringMachine
= Horizontal layering - 3 activity producing layers, each layer
produces suggestions for actions to be performed

= reactive layer - set of situation-action rules, react to precepts from the
environment

= planning layer
- pro-active behavior
- uses a library of plan skeletons called schemas
- hierarchical structured plans refined in this layer
= modeling layer
- represents the world, the agent and other agents
- set up goals, predicts conflicts
- goals are given to the planning layer to be achieved

- centralized component, contains a set of control rules
- the rules: suppress info from a lower layer to give control to a higher one
- censor actions of layers, so as to control which layer will do the actions

29

InteRRaP

= Vertically layered two pass agent architecture

= Based on a BDI concept but concentrates on the dynamic
control process of the agent

Design principles

= the three layered architecture describes the agent using various
degrees of abstraction and complexity

= both the control process and the KBs are multi-layered

the control process is bottom-up, that is a layer receives control
over a process only when this exceeds the capabilities of the
layer beyond

= every layer uses the operations primitives of the lower layer to
achieve its goals

Every control layer consists of two modules:
- situation recognition / goal activation module (SG)
- planning / scheduling module (PS) 30

Y mIm® TS

Cooperative e Socia KB
planning layer e < N
A | : S
I i
I+ J
Local _—
planning layer PS Planning KB
N —
|
v
PS < >

S
il |
'Effectors Communication ‘

?

percepts 31

‘ World inter face Sensors

actions

BDI model in InteRRaP

options
Beliefs Situation ‘ Goals ‘
Socia model Cooperative situation ‘ Cooperative goals
Sensors PSR
Mental model Local planning situation Local goals ‘
World model Routine/emergency sit. ‘ Reactions ‘
D .
filter | T sG
" Options ‘ g
Intentions
A Coop - 1 _ Cooperative option
Effectors Local opti
Local intentions ﬂ "
Reaction
Response
P} Operational primitive
’ v Joint plans |
an
PS Local plans p

Behavior patterns

32

Muller tested InteRRaP in a simulated loading area.

A number of agents act as automatic fork-lifts that move in the loading
area, remove and replace stock from various storage bays, and so
compete with other agents for resources

33

