
1

Multi-Agent Systems
Lecture 2Lecture 2

University “Politehnica” of Bucarest
2003 - 2004

Adina Magda Florea
adina@cs.pub.ro

http://turing.cs.pub.ro/blia_2004

Models of agency andModels of agency and
architecturesarchitectures
Lecture outlineLecture outline

! Conceptual structures of agents
! Cognitive agent architectures
! Reactive agent architectures
! Layered architectures

1. Conceptual structures of agents1. Conceptual structures of agents

1.1 Agent rationality

! An agent is said to be rational if it acts so as
to obtain the best results when achieving the
tasks assigned to it.

! How can we measure the agent’s rationality?
! A measure of performance, an objective

measure if possible, associated to the tasks
the agent has to execute.

3

! An agent is situated in an environment
! An agent perceives its environment through sensors and

acts upon the environment through effectors.

! Aim: design an agent program = a function that
implements the agent mapping from percepts to actions.
We assume that this program will run on some computing
device which we will call the architecture.

Agent = architecture + program

! The environment
– accessible vs. inaccessible
– deterministic vs. non-deterministic
– static vs. dynamic
– discrete vs. continue

4

1.2 Agent modeling

E = {e1, .., e, ..}
P = {p1, .., p, ..}
A = {a1, .., a, ..}

Reflex agent
see : E →→→→ P
action : P →→→→ A
env : E x A →→→→ P(E)

Environment
env

Decision
component
action

Execution
component

action

Perception
component

see

Agent

5

Agent modeling
Several reflex agents

see : E →→→→ P
env : E x A1 x … An →→→→ P(E)
inter : P →→→→ I
rinter : I →→→→ P
action : P →→→→ A

Environment
env

Decision
component
action

Execution
component

action

Perception
component

see

Agent (A1)

Agent (A2)

Agent (A3)

Interaction
component

inter / rinter

6

I = {i1,…,i,..}



2

Cognitive agents

Agents with states S = {s1,…,s,…}

! action : S →→→→ Ai

! next : S x P →→→→ S

! inter : S x P →→→→ I

! rinter : S x I →→→→ P

! see : E →→→→ P

! env : E x A1 x … An →→→→ P(E)

Agent modeling

7

Agents with states and goals

goal : E →→→→ {0, 1}

Agents with utility

utility : E →→→→ R

Environment non-deterministic

env : E x A →→→→ P(E)

The probability estimated by the agent that the result of an
action (a) execution in state e will be the new state e’

prob( ex( a, e ) = e' ) = 1
e' ∈ env( e, a)

∑

Agent modeling

8

Agents with utility

The expected utility of an action in a state e, from the
agent’s point of view

The principle of
Maximum Expected Utility (MEU) =
a rational agent must choose the action that will bring
the maximum expected utility

∑
∈

==
),('

)'(*)'),((),(
aeenve

eutilityeeaexprobeaU

Agent modeling

9

How to model?

! Getting out of a maze

– Reflex agent

– Cognitive agent

– Cognitive agent with utility

3 main problems:

! what action to choose if several available

! what to do if the outcomes of an action are not known

! how to cope with changes in the environment

10

2. Cognitive2. Cognitive agent architecturesagent architectures

2.1 Rational behaviour
AI and Decision theory

! AI = models of searching the space of possible actions to
compute some sequence of actions that will achieve a
particular goal

! Decision theory = competing alternatives are taken as
given, and the problem is to weight these alternatives and
decide on one of them (means-end analysis is implicit in
the specification of competing alternatives)

! Problem 1 = deliberation/decision vs. action/proactivity

! Problem 2 = the agents are resource bounded

11

General cognitive agent architectureGeneral cognitive agent architecture

12

Information about
itself
- what it knows
- what it believes
- what is able to do
- how it is able to do
- what it wants
environment and
other agents
- knowledge
- beliefs

Communication

Interactions

Control

Output

Input

Other
agents

Environment

Scheduler&
Executor State

Planner

Reasoner



3

2.2 FOPL models of agency
! Symbolic representation of knowledge + use inferences in FOPL -

deduction or theorem proving to determine what actions to execute

! Declarative problem solving approach - agent behavior represented
as a theory T which can be viewed as an executable specification

(a) Deduction rules

At(0,0) ∧ Free(0,1) ∧ Exit(east) → Do(move_east)

Facts and rules about the environment

At(0,0)

Wall(1,1)

∀ x ∀ y Wall(x,y) → ¬Free(x,y)

Automatically update current state and test for the goal
state At(0,3)

13

FOPL models of agency

(b) Use situation calculus = describe change in FOPL

Define a function Result(Action,State) = NewState

At((0,0), S0) ∧ Free(0,1) ∧ Exit(east) →
At((0,1), Result(move_east,S0))

Try to prove the goal At((0,3), _) and determine the
actions that lead to it

- means-end analysis

14

Advantages of FOPL
- simple, elegant
- executable specifications

Disadvantages
- difficult to represent changes over time

other logics
- decision making is deduction and

selection of a strategy
- intractable
- semi-decidable

15

2.3 BDI architectures
! High-level specifications of a practical component of an

architecture for a resource-bounded agent.

! It performs means-end analysis, weighting of competing
alternatives and interactions between these two forms of
reasoning

! Beliefs = information the agent has about the world
! Desires = state of affairs that the agent would wish to

bring about
! Intentions = desires (or actions) that the agent has

committed to achieve
! BDI - a theory of practical reasoning - Bratman, 1988
! intentions play a critical role in practical reasoning - limits

options, DM simpler
16

17

BDI particularly compelling because:
! philosophical component - based on a theory of

rational actions in humans
! software architecture - it has been implemented and

successfully used in a number of complex fielded
applications
– IRMA - Intelligent Resource-bounded Machine Architecture
– PRS - Procedural Reasoning System

! logical component - the model has been rigorously
formalized in a family of BDI logics
– Rao & Georgeff, Wooldrige
– (Int Ai ϕ ) → ¬ (Bel Ai ϕ)

18

BDI Architecture
Belief revision

Beliefs
Knowledge

Deliberation process

percepts

Desires
Opportunity
analyzer

Intentions

Filter

Means-end
reasonner

Intentions structured
in partial plans

Plans
Library of plans

Executor

B = brf(B, p)

D = options(B, D, I)

I = filter(B, D, I)

π= plan(B, I)

actions



4

Roles and properties of intentions
! Intentions drive means-end analysis

! Intentions constraint future deliberation
! Intentions persist

! Intentions influence beliefs upon which future practical
reasoning is based

Agent control loopAgent control loop
B = B0 I = I0 D = D0

while true do
get next perceipt p
B = brf(B,p)
D = options(B, D, I)
I = filter(B, D, I)
π = plan(B, I)
execute(π)

end while
19

Commitment strategies
" If an option has successfully passed trough the filter

function and is chosen by the agent as an intention, we
say that the agent has made a commitment to that
option

" Commitments implies temporal persistence of intentions;
once an intention is adopted, it should not be immediately
dropped out.

Question: How committed an agent should be to its
intentions?

" Blind commitment
" Single minded commitment
" Open minded commitment
Note that the agent is committed to both ends and means.

20

B = B0

I = I0 D = D0

while true do
get next perceipt p
B = brf(B,p)
D = options(B, D, I)
I = filter(B, D, I)
π = plan(B, I)
while not (empty(π) or succeeded (I, B) or impossible(I, B)) do

α = head(π)
execute(α)
π = tail(π)
get next perceipt p
B = brf(B,p)
if not sound(π, I, B) then

π= plan(B, I)
end while

end while
21

Reactivity, replan

Dropping intentions that are impossible
or have succeeded

Revised BDI agent controlRevised BDI agent control looploop
single-minded commitment

B = B0

I = I0 D = D0

while true do
get next perceipt p
B = brf(B,p)
D = options(B, D, I)
I = filter(B, D, I)
π = plan(B, I)
while not (empty(π) or succeeded (I, B) or impossible(I, B)) do

α = head(π)
execute(α)
π = tail(π)
get next perceipt p
B = brf(B,p)

D = options(B, D, I)
I = filter(B, D, I)

π = plan(B, I)
end while

end while 22

Replan

if reconsider(I, B) then

Revised BDI agent controlRevised BDI agent control looploop
open-minded commitment

3. Reactive agent3. Reactive agent
architecturesarchitectures

Subsumption architecture - Brooks,
1986

! (1) Decision making = {Task Accomplishing
Behaviours}
– Each behaviour = a function to perform an action

– Brooks defines TAB as finite state machines

– Many implementations: situation →→→→ action

! (2) Many behaviours can fire simultaneously

23

Subsumption architecture
! A TAB is represented by a competence module

(c.m.)

! Every c.m. is responsible for a clearly defined, but
not particular complex task - concrete behavior

! The c.m. are operating in parallel
! Lower layers in the hierarchy have higher priority and

are able to inhibit operations of higher layers

! c.m. at the lower end of the hierarchy - basic,
primitive tasks;

! c.m. at higher levels - more complex patterns of
behaviour and incorporate a subset of the tasks of
the subordinate modules

# subsumtion architecture
24



5

Module 1 can monitor and influence the inputs and
outputs of Module 2

M1 = move around while avoiding obstacles ⊃ M0
M2 = explores the environment looking for

distant objects of interests while moving
around ⊃ M1

$ Incorporating the functionality of a subordinated
c.m. by a higher module is performed using
suppressors (modify input signals) and
inhibitors (inhibit output) 25

Competence
Module (1)
Move around

Competence
Module (0)
Avoid obstacles

Inhibitor nodeSupressor node

Sensors

Competence
Module (2)
Investigate env

Competence
Module (0)
Avoid obstacles

Effectors
Competence
Module (1)
Move around

Input
(percepts)

Output
(actions)

$ More modules can be added:
• Replenishing energy
• Optimising paths
• Making a map of territory
• Pick up and put down objects

Behavior
(c, a) – pair of condition-action describing behavior

R = { (c, a) | c ⊆ P, a ∈ A} - set of behavior rules

∠∠∠∠ ⊆ R x R - binary inhibition relation on the set of behaviors, total ordering of R

function action( p: P)
var fired: P(R), selected: A
begin

fired = {(c, a) | (c, a) ∈ R and p ∈ c}
for each (c, a) ∈ fired do
if ¬ ∃ (c', a') ∈ fired such that (c', a') ∠∠∠∠ (c, a) then return a
return null

end 26

! Every c.m. is described using a subsumption language based on
AFSM - Augmented Finite State Machines

! An AFSM initiates a response as soon as its input signal
exceeds a specific threshold value.

! Every AFSM operates independently and asynchronously of
other AFSMs and is in continuos competition with the other c.m.
for the control of the agent - real distributed internal control

! 1990 - Brooks extends the architecture to cope with a large
number of c.m. - Behavior Language

Other implementations of reactive architectures
! Steels - indirect communication - takes into account the social

feature of agents

! Advantages of reactive architectures
! Disadvantages

27

4. Layered4. Layered agent architecturesagent architectures
! Combine reactive and pro-active behavior

! At least two layers, for each type of behavior

! Horizontal layering - i/o flows horizontally

! Vertical layering - i/o flows vertically

28

Layer n

…

Layer 2

Layer 1

perceptual
input

Action
output

Layer n

…

Layer 2

Layer 1

Layer n

…

Layer 2

Layer 1

Action
output

Action
output

perceptual
input

perceptual
input

Horizontal
Vertical

TouringMachine
! Horizontal layering - 3 activity producing layers, each layer

produces suggestions for actions to be performed
! reactive layer - set of situation-action rules, react to precepts from the

environment
! planning layer

- pro-active behavior

- uses a library of plan skeletons called schemas
- hierarchical structured plans refined in this layer

! modeling layer
- represents the world, the agent and other agents
- set up goals, predicts conflicts
- goals are given to the planning layer to be achieved

! Control subsystem
- centralized component, contains a set of control rules
- the rules: suppress info from a lower layer to give control to a higher one
- censor actions of layers, so as to control which layer will do the actions

29

InteRRaP
! Vertically layered two pass agent architecture
! Based on a BDI concept but concentrates on the dynamic

control process of the agent
Design principles
! the three layered architecture describes the agent using various

degrees of abstraction and complexity
! both the control process and the KBs are multi-layered
! the control process is bottom-up, that is a layer receives control

over a process only when this exceeds the capabilities of the
layer beyond

! every layer uses the operations primitives of the lower layer to
achieve its goals

Every control layer consists of two modules:
- situation recognition / goal activation module (SG)
- planning / scheduling module (PS) 30



6

31

Cooperative
planning layer SG

SG PS

SG PS

PS

Local
planning layer

Behavior
based layer

World interface Sensors Effectors Communication

Social KB

Planning KB

World KB

actions percepts

I
n
t
e
R
R
a
P

32

Beliefs

Social model

Mental model

World model

Situation

Cooperative situation

Local planning situation

Routine/emergency sit.

Goals

Cooperative goals

Local goals

Reactions

Options

Cooperative option

Local option

Reaction

Operational primitive

Joint plans

Local plans

Behavior patterns

Intentions

Cooperative intents

Local intentions

Response

Sensors

Effectors

BDI model inBDI model in InteRRaPInteRRaP

filter

plan

options

PS

SG

$ Muller tested InteRRaP in a simulated loading area.
$ A number of agents act as automatic fork-lifts that move in the loading

area, remove and replace stock from various storage bays, and so
compete with other agents for resources

33


