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Lecture 2

Lecture outline


 
Logic based representations


 
Automated reasoning


 
Predicate logic


 
Herbrand

 
theorem


 

Powerful inference rules



1. Logic based representations
2 possible aims

• to make the system function according to the logic
• to specify and validate the design



 

Conceptualization of the world / problem


 

Syntax -

 

wffs


 

Semantics -

 

significance, model


 

Model -

 

the domain interpretation for which a formula is true


 

Model -

 

linear or structured


 

M |=S

 


 

-
 

"
 

is true or satisfied in component S of the structure M"

Model theoryModel theory


 

Generate new wffs

 

that are necessarily true, given that the old wffs

 
are true -

 

entailment KB |=L

 


Proof theoryProof theory


 

Derive new wffs

 

based on axioms and inference rules

 
KB |-i

 





PrL, FOPL

4

Extend PrL, PL

Sentential logic
of beliefs
Uses beliefs atoms BA ()
Index PL with agents

Modal logic
Modal operators

Logics of knowledge
and belief
Modal operators B and K

Dynamic logic
Modal operators
for actions

Temporal logic
Modal operators for time
Linear time
Branching time

CTL logic
Branching time
and action BDI logic

Adds agents, B, D, I

Linear model

Structured models

Situation calculus
Adds states, actions

Symbol levelSymbol level

Knowledge levelKnowledge level

Description Logics
Subsumption relationships



5

knowledge propositional first-order

Paul is a man a man(Paul)

Bill is a man b man(Bill)

men are mortal c (x) (man(x) 
mortal(x))

k n o w le d g e f irs t-o rd e r s e c o n d -o rd e r

s m a l le r  is
t r a n s i t iv e

(  x )  ( (  y )  ( (  z )
( ( < ( x ,y )    < ( y ,z )  

< ( x ,z ) ) ) ) )

t r a n s i t iv e ( < )

p a r t -o f  is
t r a n s i t iv e

(  x )  ( (  y )  ( (  z )
( ( p a r t-o f ( x ,y )  
p a r t -o f ( y ,z )  

p a r t -o f ( x ,z ) ) ) ) )

t r a n s i t iv e ( p a r t-o f )

R  i s  t r a n s it iv e  if f
w h e n e v e r  R ( x ,y )  a n d

R ( y ,z )  h o ld ,  R ( x ,z )
h o ld s  to o

n o t  e x p re s s ib le
( s e e  h o w e v e r  p s e u d o -

s e c o n d  o r d e r )

(  R )  ( ( t r a n s i t iv e ( R )  
(  x )  ( (  y )  ( (  z )
( ( R ( x ,y )    R ( y ,z )  

R (x ,z ) ) ) ) ) ) )

Higher order logic

First order logic



2. Automated Reasoning





A logical
 

puzzle
Someone

 
who

 
lives

 
in Dreadbury

 
Mansion killed

 
Aunt

 Agatha.
Agatha, the

 
butler, and

 
Charles live in Dreadbury

 Mansion, and
 

are the
 

only
 

people
 

who
 

live therein.
A killer always

 
hates

 
his

 
victim, and

 
is

 
never

 
richer

 
than

 his
 

victim.
Charles hates

 
no

 
one

 
that

 
Aunt

 
Agatha hates.

Agatha hates
 

everyone
 

except
 

the
 

butler.
The

 
butler

 
hates

 
everyone

 
not

 
richer

 
than

 
Aunt

 
Agatha.

The
 

butler
 

hates
 

everyone
 

Aunt
 

Agatha hates.
No one

 
hates

 
everyone.

Agatha is
 

not
 

the
 

butler.
Who killed Aunt Agatha?











3. Predicate logic -
 

syntax


 

variables


 
function symbols


 

terms


 
predicate symbols


 

atoms


 
Boolean connectives


 

quantifiers


 
The function symbols and predicate symbols, 
each of given arity, comprise a signature .


 

A ground term is a term without any variables



Predicate logic -
 

semantics


 

Universe (aka
 

Domain) : Set U


 
Variables –

 
values in U


 

Function symbols –
 

(total) functions over U


 
Predicate symbols –

 
relations over U


 

Terms –
 

values in U


 
Formulas –

 
Boolean truth values


 

The underlying mathematical concept is that 
of a -algebra.


 
Interpretation of a formula



Algorithmic problems


 

Validity(F): |= F ? (is F true in every 
interpretation?)


 

Satisfiability (F): F satisfiable?


 
Entailment (F, G): F |= G? (does F entail G?)


 

Model(A,F): A |=F ?


 
Solve (A,F): find an assignment 

 
such that 

A, 
 

|=F


 
Solve (F): find a substitution 

 
such that |=F


 

Abduce(F): find G with "certain properties: such 
that G |= F



Refutation Theorem Proving

Suppose we want to prove H |= G.


 
Equivalently, we can prove that
•

 
F := H → G is valid.


 

Equivalently, we can prove that
•

 
~F, i.e., H ~G is unsatisfiable.


 

This principle of “refutation theorem 
proving” is the basis of almost all 
automated theorem proving methods.



Normal forms


 

Study of normal forms is motivated by:
•

 
reduction of logical concepts

•
 

efficient data structures for theorem proving.


 
The main problem in first-order logic is the 
treatment of quantifiers. The normal form 
transformations are intended to eliminate 
many of them.



Normal forms


 

Prenex
 

normal form


 

CNF


 
Eliminate existential quantifiers and 
conjunctions => Normal form

(Q x )... (Q x ) M1 1 n n (Q x ), i = 1, ... , n,i i

( x )i( x )i

matrixprefix



Herbrand
 

universe


 
Herbrand universe


 

Herbrand base


 

Ground
 

instances of a clause

H = H f ( t , .. . , t ) | t H ,1 j n}i+1 i 1 n j i   {

i
ilim H



A = {P(t ,..., t )|t H,1 i n,P apare în S}1 n i    is in

H = {a}0H0

H =



Examples

S = {P(a),~ P(x) P(f (x))}
{a}=H0

H = {a, f (a)}1

H = {a, f (a) , f ( f (a))}2

S = {P( f ( x) , a , g( y) , b)}

H = {a,b}0

H = {a, b, f (a) , f ( b) , g(a) , g( b)}1

H = {a,b,f(a),f(b),g(a),g(b),f(f(a)),f(f(b)),f(g(a)),f(g(b)),g(g(a)),g(g(b)),g(f(a)),g(f(b))}2



Herbrand
 

interpretation


 

H-interpretation
S = {P( x) Q( x) , R( f ( y))}

H = {a, f (a ) , f ( f (a )) , ...}

A = {P(a ) , Q(a ) , R(a ) , P( f (a )) , Q( f (a )) , R( f (a )) , ...}

I = {P(a) , Q(a) , R(a) , P( f (a)) , Q( f (a)) , R( f (a)) , ...}1

I = {~ P(a) , ~ Q(a) , ~ R(a) , ~ P( f (a)) , ~ Q( f (a)) , ~ R( f (a)) , ...}2



Herbrand
 

interpretation


 

H-interpretation
 

I* correspinding
 

to an 
interpretation

 
I for a set of clauses S

S = {P( x) , Q( y, f ( y, a ) )}
    a   f (1,1) f (1,2) f (2,1) f (2,2)

2 1 2 2 1

 P(1)  P(2) Q(1,1) Q(1,2) Q(2,1) Q(2,2)

a f f a f a

A = {P(a),Q(a,a),P(f (a,a)),Q(a, f (a,a)),Q(f (a,a),a),Q(f (a,a), f (a,a))}

P(a) = P(2) = f Q(a,a) = Q(2,2) = a P(f (a,a)) = P(f (2,2)) = P(1) = a

Q(a, f (a,a)) = Q(2,f (2,2)) = Q(2,1) = f Q(f (a,a),a) = Q(f (2,2),2) = Q(1,2) = a

Q(f (a,a), f (a,a)) = Q(f (2,2), f (2,2)) = Q(1,1) = f

I ~ P(a),Q(a,a),P(f (a,a)),~ Q(a, f (a,a)),Q(f (a,a),a),~ Q(f (a,a), f (a,a)),...}*  {



Herbrand
 

theorem


 

Lemma. If an interpretation I over a 
domain D satisfies the set of clauses S 
(i.e., the set S is satisfiable

 
under that 

interpretation), then any H-interpretation I* 
corresponding to I also satisfies S


 

Theorem. A set of clauses S
 

is 
inconsistent iff

 
S is false for any H- 

interpretation of S



Semantic
 

Trees


 

Semantic
 

trees


 
Complete

 
semantic

 
trees

Herbrand

 

base of S is

A = {P, Q, R}
P ~P

Q ~Q Q ~Q

R R R R
~R ~R ~R ~R

P ~P,~Q

R R R
~R ~R ~R

Q

P ~P R
~R

Q
~Q

Q R
~Q,~R



Semantic
 

Trees

Herbrand
 

base of S is


 

Complete
 

semantic
 

tree

S = {P(x),Q(f (x))}

A = {P(a),Q(a),P(f (a)),Q(f (a)),P(f (f (a))),Q(f (f (a))),...}

P(a) ~P(a)

Q(f(a))
~Q(f(a))

Q(f(a))
~Q(f(a))

P(f(a)) ~P(f(a))



Closed
 

semantic
 

trees

S = {P, Q R, ~ P ~ Q, ~ P ~ R}  
A = {P, Q, R}

P ~P

Q ~Q Q ~Q

R R R R
~R ~R ~R ~R

P ~P

Q ~Q

R
~R



Closed
 

semantic
 

trees

S = {P( x) , ~ P( x) Q( f ( x)) , ~ Q( f (a ))}

A = {P(a),Q(a),P(f (a)),Q(f (a)),P(f (f (a))),Q(f (f (a))),...}

P(a) ~P(a)

Q(f(a)) ~Q(f(a))

Failure nodes

Inference nodes



Herbrand's
 

theorem



 
Idea: to test if a set S of clauses is unsatisfiable

 
we have 

to test if S is unsatisfiable
 

only for H-interpretations 
(interpretations over the Herbrand

 
universe)

First version of HT


 
A set of clauses S is unsatisfiable

 
iff for 

any semantic tree
 

of S there exists a finite 
closed semantic tree


 
(any complete semantic tree of S is a 
closed semantic tree)



Herbrand's
 

theorem

Second version of HT


 
A set of clauses S is unsatisfiable

 
iff there 

exists a finite set S' of ground instances
 

of 
S which is unsatisfiable


 

(the Herbrand base of S is unsatisfiable)



Powerful inference rules -
 

Resolution

Resolution


 
Binary resolution


 
Factorization


 
General resolution



Factorization –
 

Russell's antinomy

A barber shaves men if and only if they do not shave 
themselves. Should the barber shave himself or not?

(A1) ~Shaves(x,x)  Shaves(barber,x)
(A2) Shaves(barber,y)  ~Shaves (y,y)

(C1) Shaves(x,x) 
 

Shaves (barber,x)
(C2) ~Shaves (barber,y) 

 
~Shaves (y,y)

(Res1)  ~Shaves (barber,x) 
 

Shaves (barber,x)
(Res2) Shaves(barber,barber) 

 
~Shaves (barber,barber)

(FC1): Shaves (barber,barber)
(FC2): ~Shaves (barber,barber)

See

 

also
http://en.wikipedia.org/wiki/Russell%27s_paradox



Factorization –
 

Russell's antinomy

Prover 9
-Shaves(x,x) -> Shaves(barber,x).
Shaves(barber,y) -> -

 
Shaves (y,y).

1 -Shaves(x,x) -> Shaves(barber,x) # 
label(non_clause).  [assumption].

2 Shaves(barber,x) -> -Shaves(x,x) # 
label(non_clause).  [assumption].

3 Shaves(x,x) | Shaves(barber,x).  [clausify(1)].
4 -Shaves(barber,x) | -Shaves(x,x).  [clausify(2)].
5 Shaves(barber,barber).  [factor(3,a,b)].
6 $F.  [factor(4,a,b),unit_del(a,5)].



Resolution


 

Theorem. Resolution is sound. Thai is, all 
derived formulas are entailed by the given 
ones


 
Theorem: Resolution is refutationally

 complete.


 
That is, if a clause set is unsatisfiable, 
then Resolution will derive the empty 
clause eventually.


 

If a clause set is unsatisfiable
 

and closed under 
the application of resolution inference rule then it 
contains the empty clause.



Powerful inference rules: Paramodulation


 

C1: P(a)


 
C2: a=b


 

If C1
 

contains a term t
 

and there is a unity 
clause C2: t=s

 
then we can infer a new clause 

from C1
 

by the substitution of a single 
occurrence of t

 
in C1 with s.


 

Paramodulation
 

is a generalisation
 

of that rule



Paramodulation


 

Be C1 and C2 two clauses, which have no 
variables in common. If

C1: L[t] 
 

C1'
C2: r

 
= s

 


 
C2'


 

where L[t] is a literal containing t
 

, C1' and C2' 
are clauses, and = mgu(t,r), then we can infer 
by paramodulation

L
 

[s]  
 

C1'  C2'


 
where L

 
[s] is obtained by replacing only one 

single occurrence of t
 

in L
 

with s.


 
Binary paramodulant



Paramodulation


 

Paramodulation
 

with factorization –
 general paramodulation


 

Paramodulation
 

with resolution is sound
 and refutationally

 
complete



Example
Group axioms

% Associativity

(x * (y * z)) = ((x * y) * z).

% Identity element

((x * e) = x) & ((e * x) = x).

% Inverse element

((x * i(x)) = e) & ((i(x) * x)=e).

Prove
% Right regular element

((f1 * f2) = (f0 * f2)) -> (f1 = f0).





 

1 x * e = x & e * x = x [assumption].


 

2 x * i(x) = e & i(x) * x = e [assumption].


 

3 f1 * f2 = f0 * f2 -> f1 = f0 [goal].


 

4 x * (y * z) = (x * y) * z.  [assumption].


 

5 (x * y)

 

* z = x * (y * z).  [copy(4),flip(a)].


 

6 x * e = x.  [clausify(1)].


 

7 e * x

 

= x.  [clausify(1)].


 

8 x * i(x)

 

= e.  [clausify(2)].


 

9 i(x) * x = e.  [clausify(2)].


 

10 f0 * f2 = f1 * f2.  [deny(3)].


 

11 f1 * f2 = f0 * f2.  [copy(10),flip(a)].


 

12 f0 != f1.  [deny(3)].


 

13 f1 != f0.  [copy(12),flip(a)].


 

14 x * (i(x) * y) = y. [para(8(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].


 

e * z = x * (i(x) * z) [8,5]


 

z = x * (i(x) * z) [7] y = x * (i(x) * y)


 

x * (i(x) * y) = y [flip]





 

15 x * (y * i(x

 

* y)) = e.  [para(8(a,1),5(a,1)),flip(a)].


 

17 i(x) * (x * y) = y.  [para(9(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].


 

22 i(f1) * (f0 * f2) = f2.  [para(11(a,1),17(a,1,2))].


 

27 i(f1) * f0 = e.  
[para(22(a,1),15(a,1,2,2,1)),rewrite([5(8),8(7),6(5)])].



 

29 f1 = f0.  [para(27(a,1),14(a,1,2)),rewrite([6(3)])].


 

30 $F.  [resolve(29,a,13,a)].



Credit

Slides 6,7,9,10,11,12 are from the slides

First-Order Theorem Proving
Peter Baumgartner
NICTA, Logic

 

and

 

Computation Program, Canberra
Peter.Baumgartner@nicta.com.au
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