Master of Science in Artificial Intelligence, 2009-2011

Knowledge Representation and Reasoning

University "Politehnica" of Bucharest Department of Computer Science Fall 2009

> Adina Magda Florea http://turing.cs.pub.ro/krr_09 curs.cs.pub.ro

Lecture 2

Lecture outline

- Logic based representations
- Automated reasoning
- Predicate logic
- Herbrand theorem
- Powerful inference rules

1. Logic based representations

2 possible aims

- to make the system function according to the logic
- to specify and validate the design
- Conceptualization of the world / problem
- Syntax wffs
- Semantics significance, model
- *Model* the domain interpretation for which a formula is true
- Model linear or structured
- M $|=_{s} \phi$ " ϕ is true or satisfied in component S of the structure M"

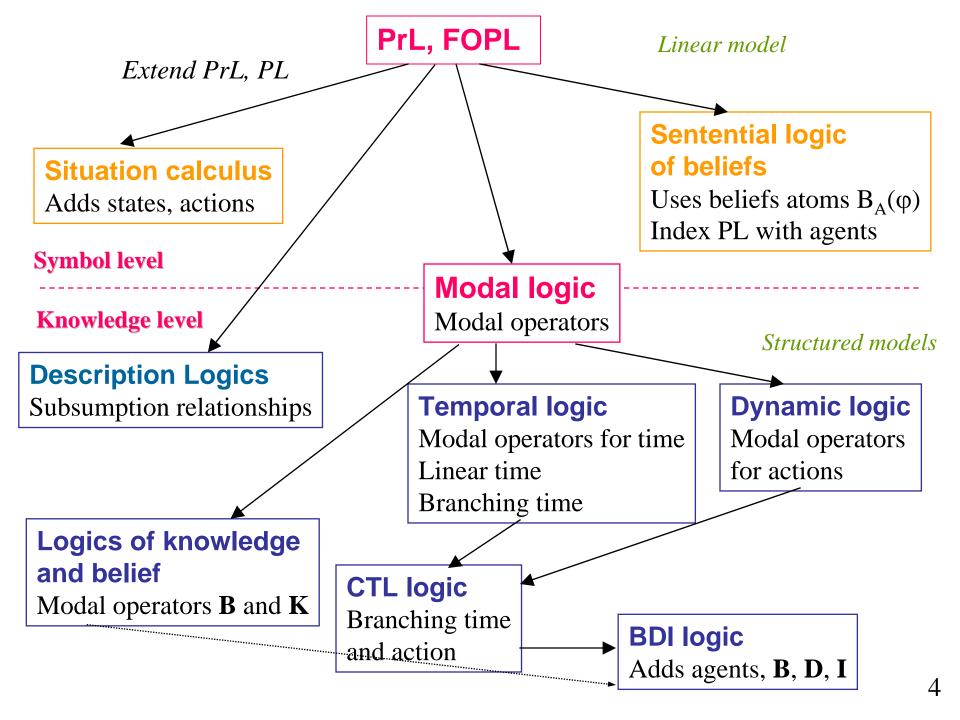
Model theory

Generate new wffs that are necessarily true, given that the old wffs are true - *entailment* KB |=_L φ

Proof theory

Derive new wffs based on axioms and inference rules

KB |-_i φ

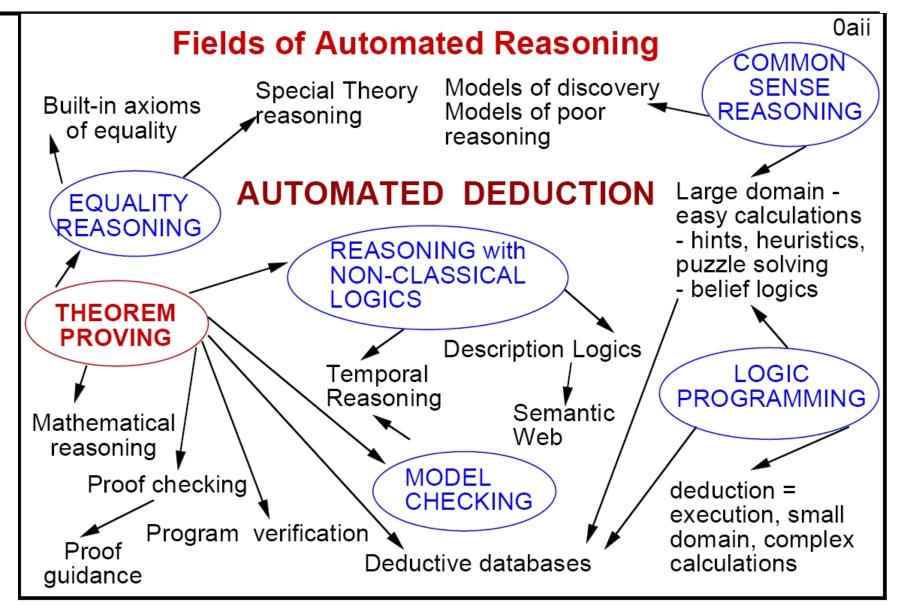


knowledge	propositional	first-order	
Paul is a man	a	man(Paul)	
Bill is a man	b	man(Bill)	
men are mortal	С	$(\forall x) (man(x) \supset$	
	First order logic	mortal(x))	

knowledge	first-order	second-order
smaller is transitive	$(\forall x) ((\forall y) ((\forall z)) ((\forall z)) ((<(x,y) \land <(y,z) \supset <((x,z)))))$	transitive(<)
part-of is transitive	$(\forall x) ((\forall y) ((\forall z)) ((\forall z)) ((part-of(x,y)) \land part-of(y,z)))$	transitive(part-of)
R is transitive iff whenever R(x,y) and R(y,z) hold, R(x,z) holds too	not expressible (see however pseudo- second order)	$(\forall R) ((transitive(R) \equiv (\forall x) ((\forall y) ((\forall z))))) = ((R(x,y) \land R(y,z) \supset R(x,z))))))$

Higher order logic

2. Automated Reasoning



Application: Compiler Validation

Problem: prove equivalence of source and target program **Example:**

To prove: (indexes refer to values at line numbers; index 0 = initial values)

$$y_1 \approx 1 \land z_0 \approx x_0 * x_0 \ast x_0 \land y_3 \approx x_0 \ast x_0 + y_1$$

$$y_1' \approx 1 \land R_{1_2} \approx x_0' \ast x_0' \land R_{2_3} \approx R_{1_2} \ast x_0' \land z_0' \approx R_{2_3} \land y_5' \approx R_{1_2} + 1$$

$$\land x_0 \approx x_0' \land y_0 \approx y_0' \land z_0 \approx z_0' \models y_3 \approx y_5'$$

A logical puzzle

Someone who lives in Dreadbury Mansion killed Aunt Agatha.

- Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only people who live therein.
- A killer always hates his victim, and is never richer than his victim.
- Charles hates no one that Aunt Agatha hates.
- Agatha hates everyone except the butler.
- The butler hates everyone not richer than Aunt Agatha.
- The butler hates everyone Aunt Agatha hates.
- No one hates everyone.
- Agatha is not the butler.

Who killed Aunt Agatha?

A Glimpse at FOTP

Before solving the problem with a theorem prover we have to formalize it

Someone who lives in Dreadbury Mansion killed Aunt Agatha.

► $\exists x (lives_at_dreadbury(x) \land killed(x, a))$

Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only people who live therein.

 $\forall x (lives_at_dreadbury(x) \leftrightarrow (x = a \lor x = b \lor x = c))$

A killer always hates his victim, and is never richer than his victim.

►
$$\forall x, y \text{ (killed}(x, y) \rightarrow \text{hates}(x, y))$$

 $\forall x, y \text{ (killed}(x, y) \rightarrow \neg \text{richer}(x, y))$

Charles hates no one that Aunt Agatha hates.

$$\forall x \text{ (hates}(\mathbf{c}, x) \rightarrow \neg \text{ hates}(\mathbf{a}, x))$$

Agatha hates everyone except the butler.

$$\forall x (\neg hates(a, x) \leftrightarrow x = b)$$

The butler hates everyone not richer than Aunt Agatha.

 $\forall x (\neg \operatorname{richer}(x, \mathbf{a}) \rightarrow \operatorname{hates}(\mathbf{b}, x))$

The butler hates everyone Aunt Agatha hates.

 $\forall x \text{ (hates(a, x) } \rightarrow \text{hates(b, x))}$

No one hates everyone.

 $\blacktriangleright \forall x \exists y (\neg hates(x, y))$

Agatha is not the butler.

▶ ¬ a = b

 $\frac{\text{killed}(x, y) \rightarrow \text{hates}(x, y)}{\text{killed}(c, y) \rightarrow \neg \text{hates}(a, y)}$

$$\frac{\text{killed}(\mathbf{c}, y) \rightarrow \neg \text{hates}(\mathbf{a}, y) \qquad \neg \text{hates}(\mathbf{a}, y) \rightarrow y = \mathbf{b}}{\text{killed}(\mathbf{c}, y) \rightarrow y = \mathbf{b}}$$

$$\frac{\text{killed}(\mathbf{c}, y) \rightarrow y = \mathbf{b} \quad \neg \mathbf{a} = \mathbf{b}}{\neg \text{killed}(\mathbf{c}, \mathbf{a})}$$

3. Predicate logic - syntax

- variables
- function symbols
- terms
- predicate symbols
- atoms
- Boolean connectives
- quantifiers
- The function symbols and predicate symbols, each of given arity, comprise a signature Σ .
- A *ground term* is a term without any variables

Predicate logic - semantics

- Universe (aka Domain) : Set U
- Variables values in U
- Function symbols (total) functions over U
- Predicate symbols relations over U
- Terms values in U
- Formulas Boolean truth values
- The underlying mathematical concept is that of a Σ-algebra.
- Interpretation of a formula

Algorithmic problems

- Validity(F): |= F ? (is F true in every interpretation?)
- Satisfiability (F): F satisfiable?
- Entailment (F, G): F |= G? (does F entail G?)
- Model(A,F): A |=F ?
- Solve (A,F): find an assignment β such that
 A, β |=F
- Solve (F): find a substitution α such that $|=F\alpha$
- Abduce(F): find G with "certain properties: such that G |= F

Refutation Theorem Proving

Suppose we want to prove $H \models G$.

- Equivalently, we can prove that
 - F := H \rightarrow G is valid.
- Equivalently, we can prove that
 ~F, i.e., H ∧~G is unsatisfiable.

This principle of "refutation theorem proving" is the basis of almost all automated theorem proving methods.

Normal forms

- Study of normal forms is motivated by:
 - reduction of logical concepts
 - efficient data structures for theorem proving.
- The main problem in first-order logic is the treatment of quantifiers. The normal form transformations are intended to eliminate many of them.

Normal forms

Prenex normal form

 $\begin{array}{ll} \mbox{matrix} \\ (Q_1 x_1) \dots (Q_n x_n) M & (Q_i x_i), i = 1, \dots, n, \\ (\exists x_i) \ (\forall x_i) \end{array}$

CNF

 Eliminate existential quantifiers and conjunctions => Normal form

Herbrand universe

- Herbrand universe $H_0 = \{a\}$
- $H_{i+1} = H_i \cup \{f(t_1, \dots, t_n) | t_j \in H_i, 1 \le j \le n\}$ $H = \lim_{i \to \infty} H_i$
- Herbrand base

 $A = \{P(t_1, ..., t_n) | t_i \in H, 1 \le i \le n, P \text{ is in } S\}$

Ground instances of a clause

Examples

$$S = \{P(a), \sim P(x) \lor P(f(x))\}$$

$$H_{0} = \{a\}$$

$$H_{1} = \{a, f(a)\}$$

$$H_{2} = \{a, f(a), f(f(a))\}$$

$$S = \{P(f(x), a, g(y), b)\}$$

$$H_{0} = \{a, b\}$$

$$H_{1} = \{a, b, f(a), f(b), g(a), g(b)\}$$

$$H_{2} = \{a, b, f(a), f(b), g(a), g(b), f(g(a)), f(g(b)), g(g(a)), g(g(b)), g(f(a)), g(f(b))\}$$

Herbrand interpretation

H-interpretation $S = \{P(x) \lor Q(x), R(f(y))\}$ $H = \{a, f(a), f(f(a)), ...\}$ $A = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), ...\}$ $I_1 = \{P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), ...\}$ $I_2 = \{ \sim P(a), \sim Q(a), \sim R(a), \sim P(f(a)), \sim Q(f(a)), \sim R(f(a)), \dots \}$

Herbrand interpretation

 H-interpretation I* correspinding to an interpretation I for a set of clauses S

 $S = \{P(x), Q(y, f(y, a))\}$

a	f(1,1)	f(1,2)	f(2,1)	f(2,2)	1	P(1)	P(2)	Q(1,1)	Q(1,2)	Q(2,1)	Q(2,2)
2	1	2	2	1		а	f	f	a	f	a

 $A = \{P(a), Q(a,a), P(f(a,a)), Q(a, f(a,a)), Q(f(a,a),a), Q(f(a,a), f(a,a))\}$

P(a) = P(2) = f Q(a,a) = Q(2,2) = a P(f(a,a)) = P(f(2,2)) = P(1) = a

Q(a, f(a, a)) = Q(2, f(2, 2)) = Q(2, 1) = f Q(f(a, a), a) = Q(f(2, 2), 2) = Q(1, 2) = a

Q(f(a,a), f(a,a)) = Q(f(2,2), f(2,2)) = Q(1,1) = f

 $I^{*} = \{ \sim P(a), Q(a,a), P(f(a,a)), \sim Q(a, f(a,a)), Q(f(a,a), a), \sim Q(f(a,a), f(a,a)), \dots \}$

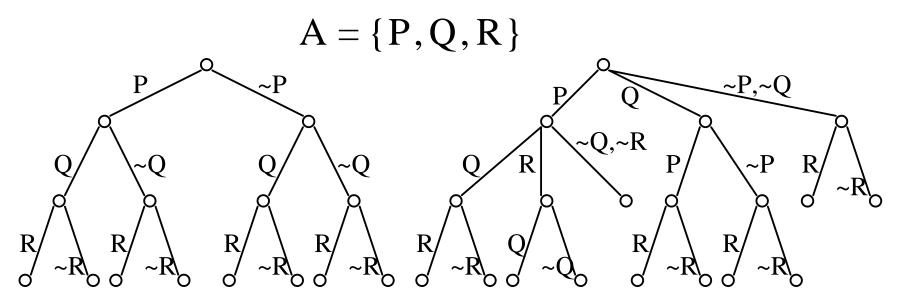
Herbrand theorem

- Lemma. If an interpretation I over a domain D satisfies the set of clauses S (i.e., the set S is satisfiable under that interpretation), then any *H-interpretation* I* corresponding to I also satisfies S
- Theorem. A set of clauses S is inconsistent iff S is false for any Hinterpretation of S

Semantic Trees

- Semantic trees
- Complete semantic trees

Herbrand base of S is



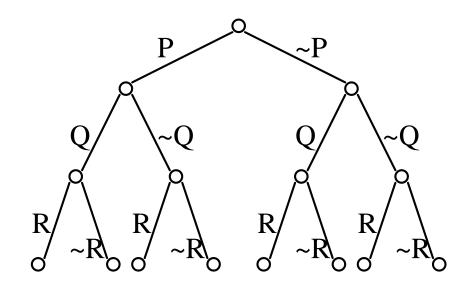
Semantic Trees

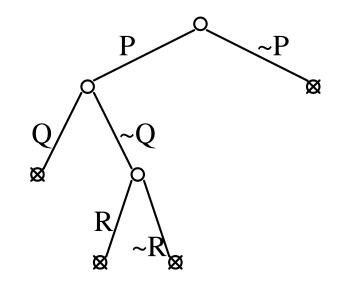
$S = \{P(x), Q(f(x))\}$ Herbrand base of S is $A = \{P(a), Q(a), P(f(a)), Q(f(a)), P(f(f(a))), Q(f(f(a))), ...\}$ **≈**P(a) P(a) Q(f(a))Q(f(a))~Q(f(a)) ~Q(f(a)) P(f(a)) $\sim P(f(a))$

Complete semantic tree

Closed semantic trees

$$S = \{P, Q \lor R, \sim P \lor \sim Q, \sim P \lor \sim R\}$$
$$A = \{P, Q, R\}$$

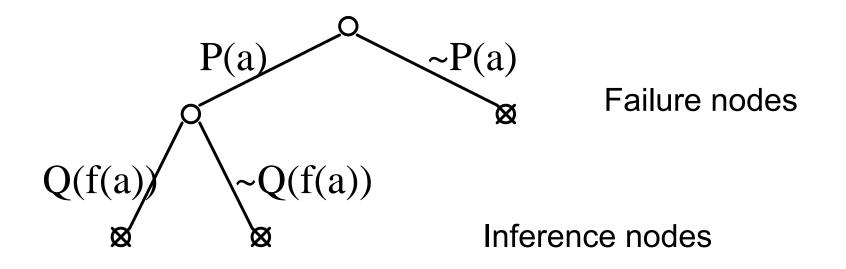




Closed semantic trees

$$S = \{P(x), \sim P(x) \lor Q(f(x)), \sim Q(f(a))\}$$

 $A = \{P(a), Q(a), P(f(a)), Q(f(a)), P(f(f(a))), Q(f(f(a))), ...\}$



Herbrand's theorem

 Idea: to test if a set S of clauses is unsatisfiable we have to test if S is unsatisfiable only for H-interpretations (interpretations over the Herbrand universe)

First version of HT

- A set of clauses S is unsatisfiable iff for any semantic tree of S there exists <u>a finite</u> <u>closed semantic tree</u>
- (any complete semantic tree of S is a closed semantic tree)

Herbrand's theorem

Second version of HT

 A set of clauses S is unsatisfiable iff there exists a <u>finite set S' of ground instances</u> of S which is unsatisfiable

(the Herbrand base of S is unsatisfiable)

Powerful inference rules - Resolution

Resolution

- Binary resolution
- Factorization
- General resolution

A barber shaves men if and only if they do not shave themselves. Should the barber shave himself or not?

- (A1) ~Shaves(x,x) \Rightarrow Shaves(barber,x)
- (A2) Shaves(barber,y) \Rightarrow ~Shaves (y,y)

(C1) Shaves(x,x) ∨ Shaves (barber,x)(C2) ~Shaves (barber,y) ∨ ~Shaves (y,y)

(Res1) ~Shaves (barber,x) ∨ Shaves (barber,x)(Res2) Shaves(barber,barber) ∨ ~Shaves (barber,barber)

(FC1): Shaves (barber,barber)(FC2): ~Shaves (barber,barber)

See also http://en.wikipedia.org/wiki/Russell%27s_paradox

Prover 9
-Shaves(x,x) -> Shaves(barber,x).
Shaves(barber,y) -> - Shaves (y,y).

- 1 -Shaves(x,x) -> Shaves(barber,x) # label(non_clause). [assumption].
- 2 Shaves(barber,x) -> -Shaves(x,x) # label(non_clause). [assumption].
- 3 Shaves(x,x) | Shaves(barber,x). [clausify(1)].
- 4 -Shaves(barber,x) | -Shaves(x,x). [clausify(2)].
- 5 Shaves(barber,barber). [factor(3,a,b)].
- 6 \$F. [factor(4,a,b),unit_del(a,5)].

Resolution

- Theorem. Resolution is sound. Thai is, all derived formulas are entailed by the given ones
- Theorem: Resolution is refutationally complete.
- That is, if a clause set is unsatisfiable, then Resolution will derive the empty clause eventually.
- If a clause set is unsatisfiable and closed under the application of resolution inference rule then it contains the empty clause.

Powerful inference rules: Paramodulation

- C1: P(a)
- C2: a=b
- If C1 contains a term t and there is a unity clause C2: t=s then we can infer <u>a new clause</u> <u>from C1</u> by the substitution of a single occurrence of t in C1 with s.
- Paramodulation is a generalisation of that rule

Paramodulation

 Be C1 and C2 two clauses, which have no variables in common. If

> C1: L[t] ∨ C1' C2: r = s ∨ C2'

 where L[t] is a literal containing t, C1' and C2' are clauses, and β= mgu(t,r), then we can infer by paramodulation

 $L\beta [\textbf{s}\beta] ~\vee~ \textbf{C1'}\beta ~\vee~ \textbf{C2'}\beta$

- where Lβ [sβ] is obtained by replacing only one single occurrence of tβ in Lβ with sβ.
- Binary paramodulant

Paramodulation

 Paramodulation with factorization – general paramodulation

 Paramodulation with resolution is sound and refutationally complete

Group axioms

% Associativity

$$(x * (y * z)) = ((x * y) * z).$$

% Identity element

$$((x * e) = x) & ((e * x) = x).$$

% Inverse element

((x * i(x)) = e) & ((i(x) * x)=e).

Prove % Right regular element

$$((f1 * f2) = (f0 * f2)) \rightarrow (f1 = f0).$$

- 1 x * e = x & e * x = x [assumption].
- 2 x * i(x) = e & i(x) * x = e [assumption].
- 3 f1 * f2 = f0 * f2 -> f1 = f0 [goal].
- 4 x * (y * z) = (x * y) * z. [assumption].
- 5 (x * y) * z = x * (y * z). [copy(4),flip(a)].
- 6 x * e = x. [clausify(1)].
- 7 <u>e * x</u> = x. [clausify(1)].
- 8 <u>x * i(x)</u> = e. [clausify(2)].
- 9 i(x) * x = e. [clausify(2)].
- 10 f0 * f2 = f1 * f2. [deny(3)].
- 11 f1 * f2 = f0 * f2. [copy(10),flip(a)].
- 12 f0 != f1. [deny(3)].
- 13 f1 != f0. [copy(12),flip(a)].
- 14 x * (i(x) * y) = y. [para(8(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].
- <u>e * z</u> = x * (i(x) * z) [8,5]
- z = x * (i(x) * z) [7] y = x * (i(x) * y)
- x * (i(x) * y) = y [flip]

- 15 x * (y * i(x * y)) = e. [para(8(a,1),5(a,1)),flip(a)].
- 17 i(x) * (x * y) = y. [para(9(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].
- 22 i(f1) * (f0 * f2) = f2. [para(11(a,1),17(a,1,2))].
- 27 i(f1) * f0 = e.
 [para(22(a,1),15(a,1,2,2,1)),rewrite([5(8),8(7),6(5)])].
- 29 f1 = f0. [para(27(a,1),14(a,1,2)),rewrite([6(3)])].
- 30 \$F. [resolve(29,a,13,a)].

Credit

Slides 6,7,9,10,11,12 are from the slides

First-Order Theorem Proving

Peter Baumgartner NICTA, Logic and Computation Program, Canberra Peter.Baumgartner@nicta.com.au