
Knowledge Representation
and Reasoning

University "Politehnica" of Bucharest
Department of Computer Science

Fall 2009

Adina Magda Florea
http://turing.cs.pub.ro/krr_09

curs.cs.pub.ro

Master of Science in Artificial Intelligence, 2009-2011

Lecture 2

Lecture outline


Logic based representations


Automated reasoning


Predicate logic


Herbrand

theorem



Powerful inference rules

1. Logic based representations
2 possible aims

• to make the system function according to the logic
• to specify and validate the design



Conceptualization of the world / problem


Syntax -

wffs


Semantics -

significance, model


Model -

the domain interpretation for which a formula is true


Model -

linear or structured


M |=S



-

"

is true or satisfied in component S of the structure M"

Model theoryModel theory


Generate new wffs

that are necessarily true, given that the old wffs

are true -

entailment KB |=L


Proof theoryProof theory


Derive new wffs

based on axioms and inference rules

KB |-i



PrL, FOPL

4

Extend PrL, PL

Sentential logic
of beliefs
Uses beliefs atoms BA ()
Index PL with agents

Modal logic
Modal operators

Logics of knowledge
and belief
Modal operators B and K

Dynamic logic
Modal operators
for actions

Temporal logic
Modal operators for time
Linear time
Branching time

CTL logic
Branching time
and action BDI logic

Adds agents, B, D, I

Linear model

Structured models

Situation calculus
Adds states, actions

Symbol levelSymbol level

Knowledge levelKnowledge level

Description Logics
Subsumption relationships

5

knowledge propositional first-order

Paul is a man a man(Paul)

Bill is a man b man(Bill)

men are mortal c (x) (man(x) 
mortal(x))

k n o w le d g e f irs t-o rd e r s e c o n d -o rd e r

s m a l le r is
t r a n s i t iv e

( x) (( y) (( z)
((< (x ,y)  < (y ,z) 

< (x ,z)))))

t r a n s i t iv e (<)

p a r t -o f is
t r a n s i t iv e

( x) (( y) (( z)
((p a r t-o f (x ,y) 
p a r t -o f (y ,z) 

p a r t -o f (x ,z)))))

t r a n s i t iv e (p a r t-o f)

R i s t r a n s it iv e if f
w h e n e v e r R (x ,y) a n d

R (y ,z) h o ld , R (x ,z)
h o ld s to o

n o t e x p re s s ib le
(s e e h o w e v e r p s e u d o -

s e c o n d o r d e r)

( R) ((t r a n s i t iv e (R) 
( x) (( y) (( z)
((R (x ,y)  R (y ,z) 

R (x ,z)))))))

Higher order logic

First order logic

2. Automated Reasoning

A logical

puzzle
Someone

who

lives

in Dreadbury

Mansion killed

Aunt

 Agatha.
Agatha, the

butler, and

Charles live in Dreadbury

 Mansion, and

are the

only

people

who

live therein.
A killer always

hates

his

victim, and

is

never

richer

than

 his

victim.
Charles hates

no

one

that

Aunt

Agatha hates.

Agatha hates

everyone

except

the

butler.
The

butler

hates

everyone

not

richer

than

Aunt

Agatha.

The

butler

hates

everyone

Aunt

Agatha hates.
No one

hates

everyone.

Agatha is

not

the

butler.
Who killed Aunt Agatha?

3. Predicate logic -

syntax



variables


function symbols



terms


predicate symbols



atoms


Boolean connectives



quantifiers


The function symbols and predicate symbols,
each of given arity, comprise a signature .



A ground term is a term without any variables

Predicate logic -

semantics



Universe (aka

Domain) : Set U


Variables –

values in U



Function symbols –

(total) functions over U


Predicate symbols –

relations over U



Terms –

values in U


Formulas –

Boolean truth values



The underlying mathematical concept is that
of a -algebra.


Interpretation of a formula

Algorithmic problems



Validity(F): |= F ? (is F true in every
interpretation?)



Satisfiability (F): F satisfiable?


Entailment (F, G): F |= G? (does F entail G?)



Model(A,F): A |=F ?


Solve (A,F): find an assignment 

such that

A, 

|=F


Solve (F): find a substitution 

such that |=F



Abduce(F): find G with "certain properties: such
that G |= F

Refutation Theorem Proving

Suppose we want to prove H |= G.


Equivalently, we can prove that
•

F := H → G is valid.



Equivalently, we can prove that
•

~F, i.e., H ~G is unsatisfiable.



This principle of “refutation theorem
proving” is the basis of almost all
automated theorem proving methods.

Normal forms



Study of normal forms is motivated by:
•

reduction of logical concepts

•

efficient data structures for theorem proving.


The main problem in first-order logic is the
treatment of quantifiers. The normal form
transformations are intended to eliminate
many of them.

Normal forms



Prenex

normal form



CNF


Eliminate existential quantifiers and
conjunctions => Normal form

(Q x)... (Q x) M1 1 n n (Q x), i = 1, ... , n,i i

(x)i(x)i

matrixprefix

Herbrand

universe


Herbrand universe



Herbrand base



Ground

instances of a clause

H = H f (t , .. . , t) | t H ,1 j n}i+1 i 1 n j i   {

i
ilim H



A = {P(t ,..., t)|t H,1 i n,P apare în S}1 n i    is in

H = {a}0H0

H =

Examples

S = {P(a),~ P(x) P(f (x))}
{a}=H0

H = {a, f (a)}1

H = {a, f (a) , f (f (a))}2

S = {P(f (x) , a , g(y) , b)}

H = {a,b}0

H = {a, b, f (a) , f (b) , g(a) , g(b)}1

H = {a,b,f(a),f(b),g(a),g(b),f(f(a)),f(f(b)),f(g(a)),f(g(b)),g(g(a)),g(g(b)),g(f(a)),g(f(b))}2

Herbrand

interpretation



H-interpretation
S = {P(x) Q(x) , R(f (y))}

H = {a, f (a) , f (f (a)) , ...}

A = {P(a) , Q(a) , R(a) , P(f (a)) , Q(f (a)) , R(f (a)) , ...}

I = {P(a) , Q(a) , R(a) , P(f (a)) , Q(f (a)) , R(f (a)) , ...}1

I = {~ P(a) , ~ Q(a) , ~ R(a) , ~ P(f (a)) , ~ Q(f (a)) , ~ R(f (a)) , ...}2

Herbrand

interpretation



H-interpretation

I* correspinding

to an
interpretation

I for a set of clauses S

S = {P(x) , Q(y, f (y, a))}
 a f (1,1) f (1,2) f (2,1) f (2,2)

2 1 2 2 1

 P(1) P(2) Q(1,1) Q(1,2) Q(2,1) Q(2,2)

a f f a f a

A = {P(a),Q(a,a),P(f (a,a)),Q(a, f (a,a)),Q(f (a,a),a),Q(f (a,a), f (a,a))}

P(a) = P(2) = f Q(a,a) = Q(2,2) = a P(f (a,a)) = P(f (2,2)) = P(1) = a

Q(a, f (a,a)) = Q(2,f (2,2)) = Q(2,1) = f Q(f (a,a),a) = Q(f (2,2),2) = Q(1,2) = a

Q(f (a,a), f (a,a)) = Q(f (2,2), f (2,2)) = Q(1,1) = f

I ~ P(a),Q(a,a),P(f (a,a)),~ Q(a, f (a,a)),Q(f (a,a),a),~ Q(f (a,a), f (a,a)),...}*  {

Herbrand

theorem



Lemma. If an interpretation I over a
domain D satisfies the set of clauses S
(i.e., the set S is satisfiable

under that

interpretation), then any H-interpretation I*
corresponding to I also satisfies S



Theorem. A set of clauses S

is
inconsistent iff

S is false for any H-

interpretation of S

Semantic

Trees



Semantic

trees


Complete

semantic

trees

Herbrand

base of S is

A = {P, Q, R}
P ~P

Q ~Q Q ~Q

R R R R
~R ~R ~R ~R

P ~P,~Q

R R R
~R ~R ~R

Q

P ~P R
~R

Q
~Q

Q R
~Q,~R

Semantic

Trees

Herbrand

base of S is



Complete

semantic

tree

S = {P(x),Q(f (x))}

A = {P(a),Q(a),P(f (a)),Q(f (a)),P(f (f (a))),Q(f (f (a))),...}

P(a) ~P(a)

Q(f(a))
~Q(f(a))

Q(f(a))
~Q(f(a))

P(f(a)) ~P(f(a))

Closed

semantic

trees

S = {P, Q R, ~ P ~ Q, ~ P ~ R}  
A = {P, Q, R}

P ~P

Q ~Q Q ~Q

R R R R
~R ~R ~R ~R

P ~P

Q ~Q

R
~R

Closed

semantic

trees

S = {P(x) , ~ P(x) Q(f (x)) , ~ Q(f (a))}

A = {P(a),Q(a),P(f (a)),Q(f (a)),P(f (f (a))),Q(f (f (a))),...}

P(a) ~P(a)

Q(f(a)) ~Q(f(a))

Failure nodes

Inference nodes

Herbrand's

theorem



Idea: to test if a set S of clauses is unsatisfiable

we have

to test if S is unsatisfiable

only for H-interpretations
(interpretations over the Herbrand

universe)

First version of HT


A set of clauses S is unsatisfiable

iff for

any semantic tree

of S there exists a finite
closed semantic tree


(any complete semantic tree of S is a
closed semantic tree)

Herbrand's

theorem

Second version of HT


A set of clauses S is unsatisfiable

iff there

exists a finite set S' of ground instances

of
S which is unsatisfiable



(the Herbrand base of S is unsatisfiable)

Powerful inference rules -

Resolution

Resolution


Binary resolution


Factorization


General resolution

Factorization –

Russell's antinomy

A barber shaves men if and only if they do not shave
themselves. Should the barber shave himself or not?

(A1) ~Shaves(x,x)  Shaves(barber,x)
(A2) Shaves(barber,y)  ~Shaves (y,y)

(C1) Shaves(x,x) 

Shaves (barber,x)
(C2) ~Shaves (barber,y) 

~Shaves (y,y)

(Res1) ~Shaves (barber,x) 

Shaves (barber,x)
(Res2) Shaves(barber,barber) 

~Shaves (barber,barber)

(FC1): Shaves (barber,barber)
(FC2): ~Shaves (barber,barber)

See

also
http://en.wikipedia.org/wiki/Russell%27s_paradox

Factorization –

Russell's antinomy

Prover 9
-Shaves(x,x) -> Shaves(barber,x).
Shaves(barber,y) -> -

Shaves (y,y).

1 -Shaves(x,x) -> Shaves(barber,x) #
label(non_clause). [assumption].

2 Shaves(barber,x) -> -Shaves(x,x) #
label(non_clause). [assumption].

3 Shaves(x,x) | Shaves(barber,x). [clausify(1)].
4 -Shaves(barber,x) | -Shaves(x,x). [clausify(2)].
5 Shaves(barber,barber). [factor(3,a,b)].
6 $F. [factor(4,a,b),unit_del(a,5)].

Resolution



Theorem. Resolution is sound. Thai is, all
derived formulas are entailed by the given
ones


Theorem: Resolution is refutationally

 complete.


That is, if a clause set is unsatisfiable,
then Resolution will derive the empty
clause eventually.



If a clause set is unsatisfiable

and closed under
the application of resolution inference rule then it
contains the empty clause.

Powerful inference rules: Paramodulation



C1: P(a)


C2: a=b



If C1

contains a term t

and there is a unity
clause C2: t=s

then we can infer a new clause

from C1

by the substitution of a single
occurrence of t

in C1 with s.



Paramodulation

is a generalisation

of that rule

Paramodulation



Be C1 and C2 two clauses, which have no
variables in common. If

C1: L[t] 

C1'
C2: r

= s



C2'



where L[t] is a literal containing t

, C1' and C2'
are clauses, and = mgu(t,r), then we can infer
by paramodulation

L

[s] 

C1'  C2'


where L

[s] is obtained by replacing only one

single occurrence of t

in L

with s.


Binary paramodulant

Paramodulation



Paramodulation

with factorization –
 general paramodulation



Paramodulation

with resolution is sound
 and refutationally

complete

Example
Group axioms

% Associativity

(x * (y * z)) = ((x * y) * z).

% Identity element

((x * e) = x) & ((e * x) = x).

% Inverse element

((x * i(x)) = e) & ((i(x) * x)=e).

Prove
% Right regular element

((f1 * f2) = (f0 * f2)) -> (f1 = f0).



1 x * e = x & e * x = x [assumption].


2 x * i(x) = e & i(x) * x = e [assumption].


3 f1 * f2 = f0 * f2 -> f1 = f0 [goal].


4 x * (y * z) = (x * y) * z. [assumption].


5 (x * y)

* z = x * (y * z). [copy(4),flip(a)].


6 x * e = x. [clausify(1)].


7 e * x

= x. [clausify(1)].


8 x * i(x)

= e. [clausify(2)].


9 i(x) * x = e. [clausify(2)].


10 f0 * f2 = f1 * f2. [deny(3)].


11 f1 * f2 = f0 * f2. [copy(10),flip(a)].


12 f0 != f1. [deny(3)].


13 f1 != f0. [copy(12),flip(a)].


14 x * (i(x) * y) = y. [para(8(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].


e * z = x * (i(x) * z) [8,5]


z = x * (i(x) * z) [7] y = x * (i(x) * y)


x * (i(x) * y) = y [flip]



15 x * (y * i(x

* y)) = e. [para(8(a,1),5(a,1)),flip(a)].


17 i(x) * (x * y) = y. [para(9(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].


22 i(f1) * (f0 * f2) = f2. [para(11(a,1),17(a,1,2))].


27 i(f1) * f0 = e.
[para(22(a,1),15(a,1,2,2,1)),rewrite([5(8),8(7),6(5)])].



29 f1 = f0. [para(27(a,1),14(a,1,2)),rewrite([6(3)])].


30 $F. [resolve(29,a,13,a)].

Credit

Slides 6,7,9,10,11,12 are from the slides

First-Order Theorem Proving
Peter Baumgartner
NICTA, Logic

and

Computation Program, Canberra
Peter.Baumgartner@nicta.com.au

	Knowledge Representation and Reasoning
	Lecture 2
	1. Logic based representations
	Slide Number 4
	Slide Number 5
	2. Automated Reasoning
	
	A logical puzzle
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	3. Predicate logic - syntax
	Predicate logic - semantics
	Algorithmic problems
	Refutation Theorem Proving
	Normal forms
	Normal forms
	Herbrand universe
	Examples
	Herbrand interpretation
	Herbrand interpretation
	Herbrand theorem
	Semantic Trees
	Semantic Trees
	Closed semantic trees
	Closed semantic trees
	Herbrand's theorem
	Herbrand's theorem
	Powerful inference rules - Resolution
	Factorization – Russell's antinomy
	Factorization – Russell's antinomy
	Resolution
	Powerful inference rules: Paramodulation
	Paramodulation
	Paramodulation
	Example
	Slide Number 38
	Slide Number 39
	Credit

