Web Programming

Enterprise Java Beans
Enterprise JavaBeans is a standard, not a product. There are EJB implementations from BEA, IBM, Oracle, and others. The network connection to EJB is the Java-only Remote Method Invocation (RMI) and the CORBA interface IIOP. IIOP makes it possible to call an EJB server from a CORBA client.

EJB components come in two flavors, session beans and entity beans. Each has two subflavors. Session beans are logically private beans; that is, it is as if they are not shared across clients. (They correspond roughly to what we describe as agent objects in the previous box entitled "Patterns for OO middleware.") The two subflavors are:

· Stateless session beans: All object state is eliminated after every operation invocation.

· Stateful session beans: These hold state for their entire life.

Exactly when a stateful session bean is "passivated" (the EJB term for deactivated) is entirely up to the container. The container reads the object attributes and writes them to disk so that the object can be reconstituted fully when it is activated. The stateful bean implementer can add code, which is called by the passivate and activate operations. This might be needed to attach or release some external resource.

The EJB container must be cautious about when it passivates a bean because if a transaction aborts, the client will want the state to be like it was before the transaction started rather than what it came to look like in the middle of the aborted transaction. That in turn means that the object state must be saved during the transaction commit. In fact, to be really safe, the EJB container has to do a two-phase commit to synchronize the EJB commit with the database commit. (In theory it would be possible to implement the EJB container as part of the database software and manage the EJB save as part of the database commit.)

Entity beans were designed to be beans that represent rows in a database. Normally the client does not explicitly create an entity bean but finds it by using a primary key data value. Entity beans can be shared.

The EJB specification allows implementers to cache the database data values in the entity bean to improve performance. If this is done, and it is done in many major implementations, it is possible for another application to update the database directly, behind the entity bean's back so to speak, leaving the entity bean cache holding out-of-date information. This would destroy transaction integrity. One answer is to allow updates only through the EJBs, but this is unlikely to be acceptable in any large-scale enterprise application. A better solution is for the entity bean not to do caching, but you must ensure that your EJB vendor supports this solution.

The two subflavors of entity beans are:

· Bean-managed persistence: The user writes the bean code.

· Container-managed persistence: The EJB automatically maps the database row to the entity bean.

Container-managed persistence can be viewed as a kind of 4GL since it saves a great deal of coding.

Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition

by Ed Roman

What Constitutes an Enterprise Bean?

Chapter 3
Introduction to Session Beans

In this chapter:

What Is a Session Bean?
Understanding How to Write Session Beans
Understanding How to Call Session Beans
Summary

	In this chapter, we'll take our first look at enterprise bean development concepts. This chapter covers the following topics:

1. What an enterprise bean component is composed of, including the enterprise bean class, the remote interface, the EJB object, the home interface, the home object, the deployment descriptor, the manifest, and the Ejb-jar file.

2. The characteristics of session beans. We'll see what makes session beans unique, and we'll introduce the differences between stateful and stateless session beans.

3. The rules for writing session bean classes.

4. How to write client code to call session beans.

This chapter lays the necessary conceptual framework for you to begin EJB programming. We'll see complete code examples in Chapters 4, 5, and 6.

EJB depends on several other technologies in the Java 2 Platform, Enterprise Edition suite. If you're having difficulty understanding this chapter, you may find it helpful to read several of the appendices first--in particular, Appendix A (covering Java Remote Method Invocation) and Appendix B (covering the Java Naming and Directory Interface).

What Constitutes an Enterprise Bean?

Enterprise beans are distributed, deployable server-side components that can be assembled into larger applications. Enterprise beans can be partitioned across multiple tiers, can be transactional, can be multiuser secure, and can be deployed in any EJB-compatible container/server product.

Enterprise beans currently have two flavors: session beans and entity beans. Session beans represent a business process, whereas entity beans represent permanent business data. Sun Microsystems may introduce other bean types in the future as well.

This section examines exactly what constitutes an enterprise bean. As we will see, an enterprise bean component is not a single monolothic file--a number of files work together to make up an enterprise bean.

The Enterprise Bean Class

In Part I, we learned that the Enterprise JavaBeans specification defines the contracts between the different parties involved in a deployment. In order for a bean to work in any container, and to work with any client of that bean, the bean must adhere to a well-defined interface. In EJB, you provide your enterprise bean component implementation in an enterprise bean class. This is simply a Java class that conforms to a well-defined interface and obeys certain rules.

An enterprise bean class contains implementation details of your component. And although there are no hard-and-fast rules in EJB, a session bean implementation will be very different from an entity bean implementation. For session beans, an enterprise bean class typically contains business-process-related logic, such as logic to compute prices, transfer funds between bank accounts, or perform order entry. For entity beans, an enterprise bean class typically contains data-related logic, such as logic to change the name of a customer, reduce the balance of a bank account, or modify a purchase order.

The EJB specification defines a few standard interfaces that your bean class can implement. These interfaces force your bean class to expose certain methods that all beans must provide, as defined by the EJB component model. The container calls these required methods to manage your bean and alert your bean to significant events.

The most basic interface that all bean classes must implement (both session and entity) is the javax.ejb.EnterpriseBean interface, shown in Source 3.1.

public interface javax.ejb.EnterpriseBean extends java.io.Serializable

{

}
Source 3.1 The javax.ejb.EnterpriseBean interface.

This interface serves as a marker interface; implementing this interface indicates that your class is indeed an enterprise bean class. The interesting aspect of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that all enterprise beans can be converted to a bit-blob and share all the properties of serializable objects (described in Appendix A). This will become important later, so keep it in mind.

Both session beans and entity beans have more specific interfaces that extend the javax.ejb.EnterpriseBean interface. All session beans must implement javax.ejb.SessionBean, while all entity beans must implement javax.ejb.EntityBean. We'll see the details of these interfaces a bit later. For now, know that your enterprise bean class never needs to implement the javax.ejb.EnterpriseBean interface directly--rather, your bean class implements the interface corresponding to its bean type.

The EJB Object

When a client wants to use an instance of an enterprise bean class, the client never invokes the method directly on an actual bean instance. Rather, the invocation is intercepted by the EJB container and then delegated to the bean instance. This happens for many reasons:

· Your enterprise bean class can't be called across the network directly because an enterprise bean class is not network-enabled. Your EJB container handles networking for you by wrapping your bean in a network-enabled object. The network-enabled object receives calls from clients and delegates these calls to instances of your bean class. This saves you from having to worry about networking issues (the container provides networking as a free service to you).

· By intercepting requests, the EJB container can automatically perform some necessary management. This includes transaction logic, security logic, bean instance pooling logic, and any other logic that the container may require.

· The EJB container can track which methods are invoked, display a real-time usage graph on a system administrator's user interface, gather data for intelligent load balancing, and more. There is no requirement that an EJB container perform these tasks. But because the EJB container intercepts all method calls, there is an opportunity for containers to perform them.

Thus, the EJB container is acting as a layer of indirection between the client code and the bean. This layer of indirection manifests itself as a single network-aware object, called the EJB object. The EJB object is a surrogate object that knows about networking, transactions, security, and more. It is an intelligent object that knows how to perform intermediate logic that the EJB container requires before a method call is serviced by a bean class instance. An EJB object acts as glue between the client and the bean, and it exposes every business method that the bean itself exposes. EJB objects delegate all client requests to beans. We depict EJB objects in Figure 3.1.

Figure 3.1 EJB objects.

You should think of EJB objects as physical parts of the container; all EJB objects have container-specific code inside of them (each container handles middleware differently and provides different qualities of service). Because each bean's EJB object is different, your container vendor supplies glue-code tools that generate the class file for your EJB objects automatically.

The Remote Interface

As we mentioned previously, bean clients invoke methods on EJB objects, rather than the beans themselves. To perform this, EJB objects must clone every business method that your bean classes expose. But how do the tools that auto-generate EJB objects know which methods to clone? The answer is in a special interface that a bean provider writes. This interface duplicates all the business logic methods that the corresponding bean class exposes. This interface is called the remote interface.

Remote interfaces must comply with special rules that the EJB specification defines. For example, all remote interfaces must derive from a common interface that is supplied by Sun Microsystems. This interface is called javax.ejb.EJBObject, and it is shown in Source 3.2.

public interface javax.ejb.EJBObject

extends java.rmi.Remote

{

 public abstract javax.ejb.EJBHome getEJBHome()

 throws java.rmi.RemoteException;

 public abstract java.lang.Object getPrimaryKey()

 throws java.rmi.RemoteException;

 public abstract void remove()

 throws java.rmi.RemoteException,

 javax.ejb.RemoveException;

 public abstract javax.ejb.Handle getHandle()

 throws java.rmi.RemoteException;

 public abstract boolean isIdentical(javax.ejb.EJBObject)

 throws java.rmi.RemoteException;

}
Source 3.2 The javax.ejb.EJBObject interface.

javax.ejb.EJBObject lists a number of interesting methods. Their explanations are previewed in Table 3.1. For now, don't worry about fully understanding the meanings--just know that these methods are required methods that all EJB objects must implement. And remember that you don't implement the methods--the EJB container does when it auto-generates the EJB objects for you.

Table 3.1 Required Methods That All EJB Objects Must Expose

	Method
	Explanation

	getEJBHome()
	Retrieves a reference to the corresponding home object (we describe home objects later).

	getPrimaryKey()
	Returns the primary key for this EJB object. A primary key is used only for entity beans (see Chapters 7-9).

	remove()
	Destroys this EJB object. When your client code is done using an EJB object, you should call this method. The system resources for the EJB object can then be reclaimed.

Note: For entity beans, remove() also deletes the bean from the underlying persistent store.

	getHandle()
	Acquires an handle for this EJB object. An EJB handle is a persistent reference to an EJB object that the client can stow away somewhere. Later on, the client can use the handle to reacquire the EJB object and start using it again.

	IsIdentical()
	Tests whether two EJB objects are identical.

	The client code that wants to work with your beans calls the methods in javax.ejb.EJBObject. This client code could be stand-alone applications, applets, servlets, or anything at all--even other enterprise beans.

In addition to the methods listed in Table 3.1, your remote interface duplicates your beans' business methods. When a bean's client invokes any of these business methods, the EJB object will delegate the method to its corresponding implementation--which resides in the bean itself.

Java RMI and EJB Objects

You may have noticed that javax.ejb.EJBObject extends java.rmi.Remote. The java.rmi.Remote interface is part of Java Remote Method Invocation (RMI). Any object that implements java.rmi.Remote is a remote object and is callable from a different Java Virtual Machine. This is how remote method invocations are performed in Java (we fully describe this in Appendix A).

Because the EJB object--provided by the container--implements your remote interface, it also indirectly implements java.rmi.Remote as well. This means that your EJB objects are fully networked objects, able to be called from other Java Virtual Machines or physical machines located elsewhere on the network. Thus, EJB remote interfaces are really just Java RMI remote interfaces--with the exception that EJB remote interfaces must also be built to conform to the EJB specification.

EJB remote interfaces must conform to Java RMI's remote interface rules. For example, any method that's part of a remote object callable across virtual machines must throw a special remote exception. A remote exception is a java.rmi.RemoteException (or a superclass of it in Java 2). A remote exception indicates that something unexpected happened on the network while you were invoking across virtual machines, such as a network, process, or machine failure. Every method shown in Table 3.1 for javax.ejb.EJBObject throws a java.rmi.RemoteException.

Remote interfaces must conform to Java RMI's parameter-passing conventions as well. Not everything can be passed over the network in a cross-VM method call. The parameters you pass in methods must be valid types for Java RMI. This includes primitives, serializable objects, and Java RMI remote objects. The full details of what you can pass are given in Appendix A.

EJB also inherits a very significant benefit from Java RMI. In RMI, the physical location of the remote object you're invoking on is masked from you. This feature spills over to EJB. Your client code is unaware of whether the EJB object it's using is located on a machine next door or a machine across the Internet. It also means the EJB object could be located on the same Java VM as the client.

Thus, EJB guarantees location transparency of distributed components. Location transparency is a necessary feature of multi-tier deployments. It means your client code is portable and not tied to a specific multi-tier deployment configuration. It also allows EJB containers to perform interesting optimizations behind the scenes when everything is running locally.

The EJB specification mandates that you use a more portable version of Java RMI, called RMI-IIOP, rather than standard Java RMI. RMI-IIOP is a standard Java extension that allows your deployment to harness more robust distributed communications and provides for interoperability with CORBA systems.

Unfortunately for EJB, RMI-IIOP was still in beta as of May 1999. This means all EJB 1.0-based application servers are based on the standard Java RMI package, not RMI-IIOP (and hence our code examples in this book rely on standard Java RMI). This should change over time, and so it's important that you understand how RMI-IIOP works. See Chapter 11 for a tutorial on RMI-IIOP.

The Home Object

As we've seen, client code deals with EJB objects and never with beans directly. The next logical question is, how do clients acquire references to EJB objects?

The client cannot instantiate an EJB object directly because EJB objects could exist on a different machine than the one the client is on. Similarly, EJB promotes location transparency, so clients should never be aware of exactly where EJB objects reside.

To acquire a reference to an EJB object, your client code asks for an EJB object from an EJB object factory. This factory is responsible for instantiating (and destroying) EJB objects. The EJB specification calls such a factory a home object. The chief responsibilities of home objects are to do the following:

· Create EJB objects

· Find existing EJB objects (for entity beans--we'll learn about that in Chapter 7)

· Remove EJB objects

Just like EJB objects, home objects are proprietary and specific to each EJB container. They contain interesting container-specific logic, such as load-balancing logic, logic to track information on a graphical administrative console, and more. And just like EJB objects, home objects are physically part of the container and are auto-generated by the container vendor's tools.

The Home Interface

We've seen that home objects are factories for EJB objects. But how does a home object know how you'd like your EJB object to be initialized? For example, one EJB object might expose an initialization method that takes an integer as a parameter, while another EJB object might take a String instead. The container needs to know this information to generate home objects. You provide this information to the container by specifying a home interface. Home interfaces simply define methods for creating, destroying, and finding EJB objects. The container's home object implements your home interface. We show this in Figure 3.2.

[image: image1.jpg]

Figure 3.2 Home objects.

As usual, EJB defines some required methods that all home interfaces must support. These required methods are defined in the javax.ejb.EJBHome interface--an interface that your home interfaces must extend. We show javax.ejb.EJBHome in Source 3.3.

public interface javax.ejb.EJBHome

extends java.rmi.Remote

{

 public abstract EJBMetaData getEJBMetaData()

 throws java.rmi.RemoteException;

 public abstract void remove(Handle handle)

 throws java.rmi.RemoteException

 javax.ejb.RemoveException;

 public abstract void remove(Object primaryKey)

 throws java.rmi.RemoteException,

 javax.ejb.RemoveException;

}
Source 3.3 The javax.ejb.EJBHome interface.

Notice that the parent javax.ejb.EJBHome derives from java.rmi.Remote. This means your home interfaces do as well, implying that home objects are also fully networked Java RMI remote objects, which can be called across VMs. The types of the parameters passed in the home interface's methods must be valid types for Java RMI.

If you'd like a preview of the methods of EJBHome, refer to Table 3.2.

Table 3.2 Required Methods That All Home Objects Expose

	Method
	Explanation

	getEJBMetaData()
	Used to access information about the enterprise beans you're working with—for example, whether a bean is a session bean or an entity bean. This information is encapsulated in an EJBMetadata object, which this method returns. EJBMetadata is primarily useful for development tools, to find out information about your beans, and for scripting languages. Most likely, you won't need to deal with EJBMetadata at all.

	remove()
	This method destroys a particular EJB object. You can call remove() in one of two ways:

1. By passing a javax.ejb.Handle object, which removes an EJB object based on a previously retrieved EJB handle. We'll learn about handles in Chapter 6.

2. By passing a primary key. This is only applicable to entity beans, which we'll learn about in Chapters 7-9.

	Deployment Descriptors

The next file that you must include with your enterprise bean component is a deployment descriptor. Deployment descriptors enable EJB containers to provide implicit middleware services to enterprise bean components. An implicit middleware service is a service that your beans can gain without coding to any middleware API--the beans gain the services automatically.

To inform the container about your middleware needs, you as a bean provider must declare your components' middleware service requirements in a deployment descriptor file. For example, you can use a deployment descriptor to declare how the container should perform life-cycle management, persistence, transaction control, and security services. The container inspects the deployment descriptor and fulfills the requirements that you lay out.

You can use a deployment descriptor to specify the following requirements of your bean:

· Bean management and life-cycle requirements.These deployment descriptor settings indicate how the container should manage your beans. For example, you specify the name of the bean's class, whether the bean is a session or entity bean, and the home interface that generates the beans.

· Persistence requirements (entity beans only).Authors of entity beans use the deployment descriptors to inform the container about whether the bean handles its persistence on its own or delegates the persistence to the EJB container in which it's deployed.

· Transaction requirements. You can also specify transaction settings for beans in deployment descriptors. These settings control what the bean requirements are for running in a transaction. By specifying your transactional needs declaratively in a deployment descriptor, your beans may not have to code to a transaction API at all, yet still benefit from sophisticated online transaction processing concepts.

· Security requirements. Deployment descriptors contain access control entries, which the beans and container use to control access control to certain operations. For example, you can specify who is allowed to use which beans, and even who is allowed to use each method on a particular bean. You can also specify what security roles the beans themselves should run in, which is useful if the beans need to perform secure operations.

In EJB 1.0, a deployment descriptor is a serialized object (see Appendix A for an explanation of Java serialization). The creation of EJB 1.0 deployment descriptors is automated for you by EJB tools supplied by parties such as EJB container vendors, EJB server vendors, or Java Integrated Development Environment (IDE) vendors. For example, you might simply need to step through a wizard in a Java IDE to generate a deployment descriptor.

As a bean provider, you are responsible for creating a deployment descriptor. Once your bean is used, other parties can modify its deployment descriptor settings. For example, when an application assembler is piecing together an application from beans, he or she can tune your deployment descriptor. Similarly, when a deployer is installing your beans in a container in preparation for a deployment to go live, he or she can tune your deployment descriptor settings as well. This is all possible because deployment descriptors declare how your beans should use middleware, rather than your writing code that uses middleware. Declaring rather than programming enables people without Java knowledge to tweak your components at a later time. This paradigm becomes an absolute necessity when purchasing EJB components from a third party because third-party source code is typically not available. By having a separate customizable deployment descriptor, you can very easily fine-tune components to a specific deployment environment without changing source code.

Bean-Specific Properties

Finally, you can include a Java-based properties file with your bean. Your bean can read these properties in at runtime and use the properties to tune how the bean functions. For example, a computation bean can use properties to enable selection of an algorithm to use. A pricing bean could use properties to customize pricing rules (as shown in Part IV of this book).

Ejb-jar File

Once you've generated your bean classes, your home interfaces, your remote interfaces, your deployment descriptors, and your bean's properties, it's time to package them up into one entity. This entity is called the Ejb-jar file. It is a compressed file that contains everything we have described, and it follows the .ZIP compression format. Jar files are convenient, compact modules for shipping your Java software. The Ejb-jar file creation process is shown in Figure 3.3.

[image: image2.jpg]N Ao

B N

OO E

& N

Figure 3.3 Creating an Ejb-jar file.

By the time you read this, there should be a number of tools available to auto-generate Ejb-jar files, such as Java IDEs. You can also generate these files yourself--we'll show you how in Chapter 4.

Once you've made your Ejb-jar file, your enterprise bean is complete, and it is a deployable unit within an application server. When they are deployed (perhaps after being purchased), the tools that EJB container vendors supply are responsible for decompressing and reading and extracting the information contained within the Ejb-jar file. From there, the deployer has to perform vendor-specific tasks, such as generating EJB objects, generating home objects, importing your bean into the container, and tuning the bean. Support for Ejb-jar files is a standard, required feature that all EJB tools support.

Summary of Terms

For your convenience, we now list the definitions of each term we've described so far. As you read future chapters, refer back to these definitions whenever you need clarification (you may want to bookmark this page).

· The enterprise bean instance is a Java object instance of an enterprise bean class. It contains business method implementations of the methods defined in the remote interface. The enterprise bean instance is "network-less" in that it contains no networked logic.

· The remote interface is a Java interface that enumerates the business methods exposed by the enterprise bean class. In EJB, client code always goes through the remote interface and never interacts with the enterprise bean instance. The remote interface is "network-aware" in that the interface obeys the rules for Java RMI.

· The EJB object is the container-generated implementation of the remote interface. The EJB object is a network-aware intermediary between the client and the bean instance, handling necessary middleware issues. All client invocations go through the EJB object. The EJB object delegates calls to enterprise bean instances.

· The home interface is a Java interface that serves as a factory for EJB objects. Client code that wants to work with EJB objects must use the home interface to generate them. The home interface is network-aware because it is used by clients across the network.

· The home object is the container-generated implementation of the home interface. The home object is also network-aware, and it obeys Java RMI's rules.

· The deployment descriptor specifies the middleware requirements of your bean. You use the deployment descriptor to inform the container about how to manage your bean, your bean's life-cycle needs, your transactional needs, your persistence needs, and your security needs.

· The bean's properties are attributes that your bean uses at runtime. You use properties to allow people to customize how your bean's logic works internally.

· The Ejb-jar file is the finished, complete component containing the enterprise bean class, the remote interface, the home interface, the bean's properties, and the deployment descriptor.

Now that you've covered the required ground for general enterprise bean concepts, let's spend the remainder of this chapter looking at our first major bean type: the session bean.

What Is a Session Bean?

Session beans are enterprise beans that represent work performed for a client. Session beans are intended to represent business processes. A business process is any task involving logic, algorithms, or workflow. Examples of business processes include billing a credit card, fulfilling an order, performing calculations, and trading stock. All of these processes are well represented by session beans.

Session Bean Lifetime

A chief difference between session beans and entity beans is the scope of their lives. A session bean is a relatively short-lived component. Roughly, it has the lifetime equivalent of a client's session. A client's session duration could be as long as a Netscape Navigator window is open, perhaps connecting to an e-commerce site with deployed session beans. It could also be as long as your Java applet is running, as long as a stand-alone application is open, or as long as another bean is using your bean.

The length of the client's session generally determines how long a session bean is in use--that is where the term session bean originated. The EJB container is empowered to destroy session beans if clients time out. If your client code is using your beans for 10 minutes, your session beans might live for minutes or hours, but probably not weeks, months, or years. Typically, session beans do not survive application server crashes, nor do they survive machine crashes. They are in-memory objects that live and die with their surrounding environments.

In contrast, entity beans can live for months or even years because entity beans are persistent objects. Entity beans are part of a durable, permanent storage, such as a database. Entity beans can be constructed in memory from database data, and they can survive for long periods of time.

Session beans are nonpersistent. This means that session beans are not saved to permanent storage, whereas entity beans are. Note that session beans can perform database operations, but the session bean itself is not a persistent object.

All session beans (as well as entity beans) must expose required management callback methods. The container uses the management methods to interact with the bean, calling them periodically to alert the bean to important events. For example, the container will alert the bean when it is being initialized and when it is being destroyed. These callbacks are not intended for client use, so you will never call them directly--only your EJB container will. We'll learn about the specifics of these management methods in the pages to come.

Conversational versus Nonconversational Session Beans

All enterprise beans hold conversations with clients at some level. A conversation is an interaction between a client and a bean, and it is composed of a number of method calls between the client and the bean. A conversation spans a business process for the client, such as configuring a frame-relay switch, purchasing goods over the Internet, or entering information about a new customer.

A stateless session bean is a bean that holds conversations that span a single method call. They are stateless because they do not hold multimethod conversations with their clients. After each method call, a stateless session bean clears itself out of all information pertaining to past invocations. Stateless session beans store no conversational state from method to method.

Because stateless session beans hold no state, all instances of the same stateless session bean enterprise class are equivalent and indistinguishable to a client. It does not matter who has called a stateless session bean in the past, since a stateless session bean retains no state knowledge about its history. This means that any stateless session bean can service any client request because they are all exactly the same. This also means that stateless beans can be easily reused by multiple clients, rather than destroyed and re-created per client. This is depicted in Figure 3.4.

[image: image3.jpg]

Figure 3.4 Stateless session bean pooling.

A stateful session bean is a much more interesting beast. Stateful session beans are components that hold conversations with clients that may span many method calls. During a conversation, the bean holds conversational state for that client and that client alone. Thus, stateful session beans are more functional than stateless session beans because they retain conversational state. As we will see when we explore stateful session beans, this functionality can come at a performance cost.

All Session Beans' Methods Are Serialized

When you call a method on a session bean instance, your EJB container guarantees that no other clients are using that instance. The container exclusively holds that bean instance and directs concurrent clients to other instances or makes them wait until you're done with that instance. Thus, if multiple clients simultaneously invoke methods on a session bean, the invocations are serialized, or performed in lock-step. This means that the container automatically makes clients line up one by one to use a bean instance (behind the scenes, the container might use Java thread synchronization to aid with this). Note that this is in no way a performance bottleneck because the container can provide other instances of the bean to service multiple simultaneous clients.

Because client requests are serialized, you do not need to code your beans as re-entrant (thread-safe); only one thread for a client can be executing within the bean at any time.

Understanding How to Write Session Beans

To write a session enterprise bean class, your class must implement the javax.ejb.SessionBean interface. This interface defines a few required methods that you must fill in. These are management methods that the EJB container calls on your bean to alert it about important events. Clients of your bean will never call these methods because these methods are not made available to clients via the EJB object. The javax.ejb.SessionBean interface is shown in Source 3.4.

public interface javax.ejb.SessionBean

extends javax.ejb.EnterpriseBean

{

 public abstract void setSessionContext(SessionContext ctx)

throws java.rmi.RemoteException;

 public abstract void ejbPassivate()

throws java.rmi.RemoteException;

 public abstract void ejbActivate()

throws java.rmi.RemoteException;

 public abstract void ejbRemove()

throws java.rmi.RemoteException;

}
Source 3.4 The javax.ejb.SessionBean interface.

Notice that the javax.ejb.SessionBean interface extends the more generic javax.ejb.EnterpriseBean interface that we saw earlier. Entity beans have their own interface, called javax.ejb.EntityBean, which also inherits from the javax.ejb.EnterpriseBean interface.

Sometimes you can simply provide empty implementations of the methods required by javax.ejb.SessionBean, and sometimes it's necessary to put logic in them. We'll spend a good amount of time looking at what the implementations should be in this book.

Let's take a detailed look at each method in the SessionBean interface.

setSessionContext(SessionContext ctx)

The container calls this method to associate your bean with a session context. A session context is your bean's gateway to interact with the container; your bean can use session contexts to query the container about your current transactional state, your current security state, and more.

A typical bean implementation would store the context away in a member variable so the context can be queried later. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 private SessionContext ctx;

 public void setSessionContext(SessionContext ctx) {

 this.ctx = ctx;

}

 ...

}
In Chapter 6, we'll take a more detailed look at what you can do with session contexts.

ejbCreate(...)

ejbCreate(...) methods initialize your session bean. You can define several ejbCreate(...) methods, and each can take different arguments. This allows clients to initialize your bean in different ways. Because you define your own ejbCreate(...) method signatures, there is no ejbCreate(...) method listed in the javax.ejb.SessionBean interface. Note that you must provide at least one ejbCreate() method in your session bean, and thus you have at least one way for your bean to be initialized.

Your implementation of ejbCreate(...) should perform any initialization your bean needs, such as setting member variables to the argument values passed in. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 private int memberVariable;

 public void ejbCreate(int initialValue) {

 this.memberVariable = initialValue;

 }

 ...

}
ejbCreate(...) methods are callback methods that your container will invoke. Client code never calls your ejbCreate(...) methods because clients never deal with beans directly--they must go through the container. But clients must have some way of passing parameters to your ejbCreate(...) methods because clients supply your initialization parameters. And if you'll recall, a home interface is the factory interface that clients call to initialize your bean. Therefore, you must duplicate each ejbCreate() method in your home interface. For example, if you have the following ejbCreate() method in your bean class:

public void ejbCreate(int i) throws ...
you must have this create() in your home interface (you leave off the "ejb" part of the signature):

public void create(int i) throws ...
The client calls create() on the home interface, and the parameters are then passed to your bean's ejbCreate().

ejbPassivate()

If too many beans are instantiated, the EJB container can passivate some of them, which means writing the beans to a temporary storage such as a database or file system. The container can then release the resources the beans had claimed. Immediately before your beans are passivated, the container calls your ejbPassivate() method.

Your bean's implementation of ejbPassivate() should release any resources your bean may be holding. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 public void ejbPassivate() {

 <close socket connections, etc...>

 }

 ...

}
We'll learn more about passivation in Chapter 5.

Passivation does not apply to stateless session beans because stateless session beans do not hold state and can simply be created/destroyed rather than passivated/activated.

ejbActivate()

When a client needs to use a bean that's been passivated, the reverse process automatically occurs: The container kicks the bean back into memory, or activates the bean. Immediately after your bean is activated, the container calls your ejbActivate() method.

Now that your bean is back in memory again, your bean's implementation of ejbActivate() should acquire any resources your bean needs. This is typically every resource you released during ejbPassivate(). For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 public void ejbActivate() {

 <open socket connections, etc...>

 }

 ...

}
We'll learn more about activation in Chapter 5.

Activation does not apply to stateless session beans because stateless session beans do not hold state and can simply be created/destroyed rather than passivated/activated.

ejbRemove()

When the container is about to remove your session bean instance, it calls your bean's ejbRemove() callback method. ejbRemove() is a clean-up method, alerting your bean that it is about to be destroyed and allowing it to end its life gracefully. ejbRemove() is a required method of all beans, and it takes no parameters. Therefore, there is only one ejbRemove() method per bean. This is in stark contrast to ejbCreate(), which has many forms. This makes perfect sense--why should a destructive method be personalized for each client? (This is an analogous concept to destructors in C++.)

Your implementation of ejbRemove() should prepare your bean for destruction. This means you need to free all resources you may have allocated. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 public void ejbRemove() {

 <prepare for destruction>

 }

 ...

}
Your container can call ejbRemove() at any time, including if the container decides that the bean's life has expired (perhaps due to a very long timeout). Note that the container may never call your bean's ejbRemove() method, such as if the container crashes or if a critical exception occurs. You must be prepared for this contingency. For example, if your bean represents an e-commerce shopping cart, it might store temporary shopping cart data in a database. Your application should provide a utility that runs periodically to remove any abandoned shopping carts from the database.

Business Methods

In addition to the required callback methods we just described, you should define zero or more business methods in your bean. These methods actually solve business problems. For example:

import javax.ejb.*;

public class MyBean implements SessionBean {

 public int add(int i, int j) {

 return (i + j);

 }

 ...

}
For clients to call your business methods, you must list your business methods in your bean's remote interface.

Understanding How to Call Session Beans

We now take a look at the other half of the world--the client side. We are now customers of the beans' business logic, and we are trying to solve some real-world problem by using one or more beans together. Clients can exist in any scenario:

· On a stand-alone machine communicating with beans deployed locally.

· In a stand-alone application communicating over the network with remote beans.

· In a Java-based applet running inside a Web browser, communicating over the network with remote beans.

· Behind a Web server, communicating over a LAN with remote beans. The end user might be using an HTML-based user interface, communicating over the Internet, bound to the bean client with glue-code such as Java Server Pages (JSPs) or Java servlets (our e-commerce deployment in Part IV shows how to use servlets as EJB clients).

· As other enterprise beans, perhaps as part of a workflow to solve a larger business problem.

Note that in any of these scenarios, there are two different kinds of clients:

· Java RMI-based clients. These clients use the Java Naming and Directory Interface (JNDI) to look up objects over a network, and they use the Java Transaction API (JTA) to control transactions.

· CORBA clients. Clients can also be written to the CORBA standard. This yields a fuller suite of distributed object services and allows for legacy integration. CORBA clients use the CORBA Naming Service (COS Naming) to look up objects over the network, and they use the CORBA's Object Transaction Service (OTS) to control transactions.

Whether you're using CORBA or RMI, your client code typically looks like this:

1. Look up a home object.

2. Use the home object to create an EJB object.

3. Call business methods on the EJB object.

4. Remove the EJB object.

Let's go through each of these steps with Java RMI-based clients. See Chapter 11 for CORBA.

Looking Up a Home Object

To look up a home object, your client code must use the JNDI. We now provide a brief overview of the role JNDI plays in deployments; feel free to read Appendix B for the full details of how JNDI works.

The Role of Naming and Directory Services in J2EE

One of the goals of the Java 2 Platform, Enterprise Edition (J2EE) is that your application code should be "write once, run anywhere." Any Java code running in an enterprise deployment should be independent of a particular multi-tier configuration. How you choose to distribute your beans, your servlets, and other logic across multiple tiers should not affect your code. This is called location transparency--the physical locations of entities across a deployment are transparent to your application code.

J2EE achieves location transparency by leveraging naming and directory services. Naming and directory services are products that store and look up resources across a network. Some examples of directory service products are Netscape's Directory Server, Microsoft's Active Directory, and IBM's Lotus Notes.

Traditionally, corporations have used directory services to store usernames, passwords, machine locations, printer locations, and so on. J2EE products exploit directory services to store location information for resources that your application code uses in an enterprise deployment. These resources could be EJB home objects, enterprise bean environment properties, database drivers, message service drivers, and other resources. By using directory services, you can write application code that does not depend on specific machine names or locations. This is all part of EJB's location transparency, and it keeps your code portable. If later you decide that resources should be located elsewhere, your code will not need to be rebuilt because the directory service can simply be updated to reflect the new resource locations. This greatly enhances maintenance of a multi-tier deployment that may evolve over time. This becomes absolutely necessary when purchasing prewritten software (such as enterprise beans), because your purchased components' source code will likely not be made available to you to change.

Unless you're using CORBA, the de facto API used to access naming and directory services is JNDI. JNDI adds value to your enterprise deployments by providing a standard interface for locating users, machines, networks, objects, and services. For example, you can use the JNDI to locate a printer on your corporate intranet. You can also use it to locate a Java object or to connect with a database. In J2EE, JNDI is used extensively for locating resources across an enterprise deployment, including home objects, environment properties, database resources, and more.

There are two common steps that must be taken to find any resource in a J2EE deployment:

1. Associate the resource with a "nickname" in your deployment descriptor. Your J2EE product will bind the nickname to the resource.

2. Clients of the resource can use the nickname with JNDI to look up the resource across a deployment.

How to Use JNDI to Locate Home Objects

To achieve location transparency, EJB containers mask the specific locations of home objects from your enterprise beans' client code. Clients do not hard-code the machine names that home objects reside on, but rather they use JNDI to look up home objects. Home objects are physically located "somewhere" on the network--perhaps in the address space of an EJB container, perhaps in the address space of the client, or perhaps elsewhere on the network. As a developer who writes client code to use beans, you don't care.

For clients to locate a home object, you must provide a nickname for your bean's home object. Clients will use this nickname to identify the home object it wants. For example, if you have a bean called MyBean, you may specify a nickname MyHome in the deployment descriptor. The container will automatically bind the nickname MyHome to the home object. Then any client on any machine across a multi-tier deployment can use that nickname to find home objects, without regard to physical machine locations. Clients use the JNDI API to do this. JNDI goes over the network to some directory service to look for the home object, perhaps contacting one or more directory services in the process. Eventually the home object is found, and a reference to it is returned to the client. This is shown in Figure 3.5.

[image: image4.jpg]

Figure 3.5 Acquiring a reference to a home object.

More concretely, your client code must execute the following steps to acquire a reference to a home object via JNDI:

· Set up your environment. You must specify which directory service you're using, specify the network location of the directory service you desire, and specify any usernames and passwords that may be required for authentication.

· Form the initial context. The initial context is a local starting point for connecting to directory structures. You need to pass the initial context to the environment properties you just set up.

· Retrieve the home object. To retrieve the home object, you must perform a JNDI lookup() operation on the remote directory. The returned object is an RMI remote object that you must cast to a home object.

The following code segment illustrates these steps:

/*

 * Get System properties for JNDI initialization

 */

Properties props = System.getProperties();

/*

 * Form an initial context

 */

Context ctx = new InitialContext(props);

/*

 * Get a reference to the home object - the

 * factory for EJB objects

 */

MyHome home = (MyHome) ctx.lookup("MyHome");
Creating an EJB Object

Once your client code has a reference to a home object, you can use that home object as a factory to create EJB objects. To create an EJB object, call one of the create() methods on the home. The following line illustrates this:

MyRemoteInterface ejbObject = home.create();
We pass no parameters to create() because stateless session beans never take initialization parameters (they would never remember the parameter values later because they are stateless). Note that when we call create(), the bean instance's ejbCreate() method may not be called because the container can pool and reuse existing beans.

Calling a Method

Now that the bean's client has an EJB object, it can start calling one or more of the methods that the bean exposes through the EJB object. When the client calls a method on the EJB object, the EJB object must choose a bean instance to service the request. The EJB object may need to create a new instance or reuse an existing instance. The actual scheme of when pooling and reusing beans is performed is proprietary to each EJB container implementation. When the bean instance is done, the EJB object takes the return value from the bean's method and ships it back to the bean's client. This process is shown in Figure 3.5.

The following line illustrates calling an add() business method through the EJB object:

ejbObject.add();
Destroying the EJB Object

Finally, when you want to destroy an EJB object, call a remove() method on the EJB object or home object. This enables the container to destroy the EJB object.

The following line illustrates removing our hello EJB object:

ejbObject.remove();

As with creating a bean, destroying a bean might not necessarily correspond with literally destroying in-memory bean objects because the EJB container controls their life cycles to allow for pooling between heterogeneous clients.

Summary

In this chapter, we learned the fundamental concepts behind session beans. We started off by looking at the general enterprise bean--the fundamental component in an EJB system. We then looked at session beans--enterprise beans that represent a business process--and saw the characteristics that make session beans unique. We surveyed the rules for writing a session bean class, and we also stepped through a client interaction with a session bean.

In the next chapter, we'll learn about stateless session beans. We'll also write our first enterprise bean, complete with an enterprise bean class, remote interface, home interface, deployment descriptor, manifest file, and Ejb-jar file.

Inca un articol:

http://www.phptr.com/articles/article.asp?p=28706&seqNum=4
si inca unul:

http://www.phptr.com/articles/article.asp?p=28706&seqNum=5
