Continuous Education Program on Intelligent Agents Technology and Knowledge Processing

University "Politehnica" of Bucharest, 24 June - 4 July 2001
 

 
 
IP MATERIALS

 

Proceedings
The IP Proceedings

Abstracts:

Title:
English version: Various nature of knowledge and their representation

Abstract:
Agents, as every intelligent system, need some kind of knowledge. It can eventually be represented as pure procedures (compiled knowledge), but it is more useful, especially for the interaction with humans, to have it under more declarative forms. The basic requirement is to be able to draw conclusions from the input, i.e. to perform inferences. Therefore, any representation of knowledge can be seen as a kind of Logic. But there exist several kinds of Logic, and this lecture will try to draw correspondences between the intrinsic variety of knowledge and the set of existing deductive systems. After a short reminder concerning propositional, first-order, higher-order classical logics, and many-valued logics, a brief presentation of modal and non-monotonic logics will be given, in relation with semantic networks, and in each case, the problem of adequacy of the nature of knowledge with the logic considered will be raised.

French version: Les différentes natures de connaissances et leur représentation

Abstract:
Les agents, comme tout système intelligent, ont besoin de se servir de connaissances. En fin de compte, elles peuvent être représentées comme de pures procédures (connaissances compilées), mais il est plus utile, surtout en vue de l'interaction des agents avec les êtres humains, de disposer de ces connaissances sous des formes plus déclaratives. L'exigence de base est la possibilité de tirer des conclusions à partir de données, c'est-à-dire d'effectuer des inférences. C'est pourquoi toute représentation de connaissances peut être vue comme une sorte de logique. Mais il y a de nombreuses sortes de logique, et cet exposé tentera d'établir des correspondances entre la diversité intrinsèque des connaissances et l'ensemble des systèmes déductifs existants. Après un bref rappel sur les logiques classiques (propositionnelles, de premier ordre, d'ordre supérieur) et sur les logiques multi-valuées, on présentera rapidement des logiques modales et non monotones, en relation avec les réseaux sémantiques, et dans chaque cas, l'adéquation de la nature des connaissances avec la logique considérée sera discutée.

Author: Prof. Daniel Kayser


Title:
English version: Multi-agent Modal Logics

Abstract:
The lecture will focus on the work of Halpern, Moses & al. Generally, modal logic considers one relation of accessibility. What happens if several such relations are simultaneously present? This is an abstraction of a multi-agent system where each agent is characterized by its own relation of accessibility. Notions such as common knowledge, implicit knowledge, etc. are defined and their properties are developped.

French version: Logiques modales pour les systèmes multi-agents

Abstract:
L'exposé portera sur les travaux d'Halpern, Moses & al. Généralement, la logique modale considère une seule relation d'accessibilité. Qu'arrive- t-il si plusieurs relations sont simultanément présentes ? On obtient ainsi une abstraction d'un système multi-agent, dans laquelle chaque agent est caractérisé par sa propre relation d'accessibilité. Des notions telles que les connaissances communes, les connaissances implicites, etc. seront définies et leurs propriétés seront développées.

Author: Prof. Daniel Kayser


Title:
A unified model of negotiation based on argumentation

Abstract:
The paper presents a multi-agent system that comprises a society of self-interested agents that use argumentation-based negotiation to reach agreements regarding cooperation and goal satisfaction. The system is a generalization of some argumentation-based multi-agent systems proposed in the literature in which better cooperation agreements are reached through the use of human-like arguments. We then show how this type of negotiation can be adapted according to evolved models of other agents in the system. Negotiation is performed using different types of arguments varying from quantitative ones, such as money or trade objects, to qualitative arguments, such as promises, appeal to past promises, and past examples. The models of the other agents are built and refined incrementally during negotiation; these models are then used to adapt the negotiation strategy according to other agents' desires, preferences and behavioral characteristics during interactions.

Author: Cosmin Carabelea


Title:
English version: Learning in MAS

Abstract:
Machine Learning can be defined as the explicit acquisition of new knowledge in order to improve the performance of a system. The lecture will briefly review the definitions and some characteristics of Machine Learning in Artificial Intelligence. Then Machine Learning will be studied along the four dimensions of MAS : Agents, Environment, Interactions, and Organisation. In each dimension, some examples of learning MAS will be presented. Then we shall try to answer some basic questions such as : "Why to learn in a MAS ?" ; "What can be learned in a MAS ?" ; "How to learn in MAS ?". In conclusion we shall present some works about Assistant Agents and Machine Learning.

French version: Apprentissage dans les SMA

Abstract:
L'apprentissage automatique peut-être défini comme l'acquisition d'une connaissance explicite de façon à améliorer les performances d'un système. L'exposé passera rapidement en revue quelques définitions et caractéristiques de l'apprentissage automatique en intelligence artificielle. Ensuite nous étudierons l'apprentissage automatique dans les SMA selon les quatre dimensions d'un SMA : Agents, Environnement, Interactions et Organisation. Dans chaque dimension des exemples de SMA apprenants seront présentés. Ensuite nous tenterons de répondre à quelques questions de base telles que "Pourquoi apprendre dans un SMA ?" ; "Quoi apprendre dans un SMA ?" ; "Comment apprendre dans un SMA ?". En conclusion nous présenterons quelques applications de l'apprentissage automatique aux agents d'interface.

Author: Prof. Philippe Beaune


Title:
Protocols for negotiation with coalition between self-interested agents

Abstract:
Negotiation is a kind of decision making where two or more parties jointly search a space of solutions with the goal of reaching a consensus. This search is usually a single dimensional process where the different agents involved on the negotiation adapt their price offers in order to reach their goals (to sell or to buy a good). However, this is a limited process many times unrealistic because more than one single issue must be negotiated in order to find an adequate solution. In this talk we present a multi-issue negotiation protocol for one buyer to many sellers interaction. The presentation is enriched by an application example that illustrates the negotiation process and demonstrates how it can be useful both as a product brokering and a market brokering tool.

Keywords:
Negotiation, Multi-issue negotiation, Electronic Commerce.

Author: Prof. Jose Ribeira da Fonseca


Title:
Models of communication for multiagent systems

Abstract:
Interaction between autonomous agents within a multiagent system requires explicit communication in order to allow knowledge exchange between them. This seminar deals with the interaction issue between agents from different perspectives. First, one will discuss interaction languages among agents and will show how they apply on different domains. Second, one will focus on interaction protocol engineering and tackle the modeling of a structured message exchange between agents according to a component-based approach. A related application such as electronic commerce will be presented. Thirdly, one will present the notion of constraints on interaction protocols via a calculus model called POS which is based on operationnal semantics. Such an approach will be shown upon coordination strategies for soccer-robots.

Author: Prof. Jean-Luc Koning


© Copyright 2000/2001